ELECTRICAL AND ELECTRONICS PRINCIPLES

UNIT CODE: 0713 441 15A

TVET CDACC UNIT CODE: ENG/CU/AUT/CC/05/5/MA

Relationship with Occupational Standards

This unit addresses the unit of competency: Apply Electrical and electronics principles.

Unit Duration: 80 Hours

Unit Description

This unit describes the competences required in order to apply electrical and electronics principles. It involves applying basic concepts of electrical quantities, cells and batteries, magnetism and electromagnetism, basic electrical machines and electronics principles.

Summary of Learning Outcomes

S/No.	Learning Outcomes	Duration (Hours)
1.	Apply basic concepts of electrical quantities	10
2.	Apply DC and AC circuits	10
3.	Apply the concept of cells and batteries	10
4.	Apply magnetism and electromagnetism	10
5.	Apply basic electrical machines	20
6.	Apply electronics components	20
	TOTAL	80

Learning Outcomes, Content and Suggested Assessment Methods

Learning Outcome	Content	Suggested Assessment Methods	
1. Use the concept of basic	1.1 Basic SI Units		
Electrical quantities	1.1.1 Overview of SI Units	Portfolio of	
	1.1.1.1 Power (Watts,	evidence	
	W)	Practical test	
	1.1.1.2 Current	Third party report	
	(Amperes, A)	Written tests	
	1.1.1.3 Resistance	Project work	
	(Ohms,Ω)		
	1.1.1.4 Voltage (Volts,		
	V)		

Conductors and Insulators 1.2 1.2.1 Identification and Characteristics 1.2.1.1 Metals vs. nonmetals 1.2.1.2 Applications in electrical circuits **Electrical Quantities** 1.3 Charge, Force, 1.3.1 Work, and Power 1.3.2 Definitions and units 1.3.3 Calculations involving Electrical quantities 1.4 Ohm's Law Understanding 1.4.1 Ohm's Law 1.4.2 Practical applications and calculations 1.5 Basic Electrical and **Electronic Measurements** 1.5.1 Measurement **Techniques** 1.5.2 Use of Multimeters, oscilloscopes, and ammeters

	1.5.3	Measurement	
		accuracy and	
		calibration	
2. Apply DC and AC	2.1 Introduc	etion to Electrical	Oral questioning
circuits	Circuits		Portfolio of
	2.1.1	Introduction to	evidence
		electricity:	Practical test
	2.1.2		Third party report
		and power.	Written tests
	2.1.3	Overview of DC	Project work
		and AC circuits.	1 Toject work
	2.1.4	Basic circuit	
		elements:	
		Resistors,	
		capacitors, and	
		inductors.	
	2.2 DC Circ	cuit Analysis	
	2.2.1	Series and parallel	
		circuits.	
	2.2.2	Voltage and	
		current division	
		principles.	
	2.2.3	Kirchhoff's	
		Voltage Law	
		(KVL) and	
		Kirchhoff's	
		Current Law	
		(KCL).	
	2.2.4	Analysis of	
		complex circuits	
		using KVL and	
		KCL.	

Hands-on lab: 2.2.5 Building and testing DC circuits. 2.3 AC circuits analysis 2.3.1 Introduction to AC: Sinusoidal waveforms, frequency, and period. 2.3.2 RMS values, peak values, and average values. 2.3.3 AC voltage and current sources. 2.3.4 Phasor representation of AC quantities. Impedance and 2.3.5 admittance. Series and parallel 2.3.6 AC circuits.

2.3.7 Resonance in RLC circuits.

2.3.8 Practical analysis of AC circuits using phasors.

2.3.9 Power in AC Circuits

2.3.9.1 Power factor and power factor correction.

	2.3.9.2 Real, reactive,	
	and apparent	
	power.	
	2.3.9.3 AC power	
	calculations for	
	single-phase	
	and three-	
	phase circuits.	
	2.3.9.4 Energy	
	consumption	
	and efficiency.	
	2.3.9.5 Applications of	
	AC power in	
	household and	
	industrial	
	settings.	
	2.4 Practical Activity:	
	2.4.1 Connection in	
	series and Parallel	
	Simulation	
3. Apply the concept of	3.1 Introduction to Cells and	
cells and batteries	Batteries	Portfolio of
	3.2 Overview of energy storage	evidence
	and electrochemical cells.	Practical test
	3.3 Basic concepts: Voltage,	Third party report
	current, capacity, and energy	Written tests
	density.	Project work
	3.4 Internal resistance of cells and	3
	electromotive force, e.m.f.	
	3.5 Electrochemical principles:	
	Redox reactions and electrode	
	potentials.	
	1	

- 3.6 Components of a cell: Anode, cathode, electrolyte, and separator.
- 3.7 Types of cells: Primary vs. secondary cells (non-rechargeable vs. rechargeable).
- 3.8 Primary Cells (Non-Rechargeable)
 - 3.8.1 Zinc-Carbon Cells:
 Construction,
 chemistry, and
 applications.
 - 3.8.2 Alkaline Cells:

 Advantages over

 zinc-carbon,

 usage, and

 performance

 characteristics.
 - 3.8.3 Comparison of common primary cells (e.g., lithium primary cells).
 - 3.8.4 Performance limitations and efficiency of primary cells.
 - 3.8.5 Environmental impact and disposal considerations for non-rechargeable batteries.

Hands-on lab: 3.8.6 Testing the performance of different primary cells. 3.9 Secondary Cells (Rechargeable) 3.9.1 Lead-Acid Batteries: Chemistry, construction, and applications (e.g., automotive). 3.9.2 Nickel-Cadmium (NiCd) and Nickel-Metal Hydride (NiMH): Differences, pros, and cons. Charging and 3.9.3 discharging cycles of rechargeable cells. 3.9.4 Lithium-Ion Batteries: Working principles, construction, and applications. Advantages of 3.9.5 lithium-ion technology over older battery types.

3.9.6 Safety considerations: Overcharging, thermal runaway, and battery management systems. 3.9.7 Emerging Technologies: Solid-state batteries, lithiumsulphur, and other advancements. 3.9.8 Energy density and power density considerations in modern applications. 3.9.9 Batteries maintenance 3.9.10 Hands-on lab: Disassembling and examining a rechargeable battery. 3.10 Battery Performance and Characteristics 3.10.1 Battery capacity: Ampere-hour (Ah) ratings and energy content. 3.10.2 Factors affecting battery life:

Temperature, charge/discharge rates, and cycling. 3.10.3 Internal resistance and its effect on performance. 3.10.4 Battery efficiency and energy losses. 3.10.5 State of charge (SOC) and depth of discharge (DOD). 3.10.6 Battery degradation and aging mechanisms. 3.10.7 Measuring battery parameters (voltage, current, capacity). 3.10.8 Testing techniques for battery health and performance. 3.10.9 Hands-on lab: Performance testing of different battery types. 3.11 Applications of Batteries 3.11.1 Batteries in consumer electronics (e.g., smartphones, laptops).

3.11.2 Automotive
applications:
Starting, lighting,
and ignition (SLI)
batteries.

3.11.3 Electric vehicles
(EVs) and hybrid
electric vehicles
(HEVs): Battery
requirements and
challenges.

3.11.4 Industrial and grid storage applications.

3.11.5 Renewable energy integration: Solar and wind energy storage solutions.

3.11.6 Specialized applications:

Medical devices, aerospace, and military.

3.11.7 Case studies on battery failure and safety incidents.

3.11.8 Discussion on regulations and standards for battery use.

3.12 Environmental Impact and Recycling

	3.12.1 Environmental	
	impact of battery	
	production and	
	disposal.	
	3.12.2 Strategies for	
	reducing the	
	ecological	
	footprint of battery	
	technologies.	
	3.12.3 Recycling	
	processes for	
	different types of	
	batteries.	
	3.12.4 Government	
	policies and	
	regulations	
	regarding battery	
	disposal.	
	3.12.5 Advances in	
	battery recycling	
	technologies.	
	3.13 Hands-on lab: Exploring	
	the recycling process and	
	evaluating eco-friendly	
	battery alternatives.	
4. Apply magnetism and	4.1 Magnetic Circuits and	Oral questioning
electromagnetism	Devices	Portfolio of
	4.1.1 Introduction to	evidence
	magnetic circuits.	Practical test
	4.1.2 Magnetic flux,	Third party report
	magnetic field	Written tests
	density, magnetic	Project work
	field strength,	

Reluctance,
magnetomotive
force (MMF), and
magnetic flux.

- 4.1.3 Calculations
 involving magnetic
 circuits
- 4.1.4 Analogies between electric and magnetic circuits.
- 4.1.5 Magnetic materials in electrical devices (soft and hard magnetic materials).
- 4.2 Electromagnetic Induction
 - 4.2.1 Faraday's Law of electromagnetic induction.
 - 4.2.2 Lenz's Law:
 Direction of induced
 EMF.
 - 4.2.3 Practical applications: Electric generators and transformers.
 - 4.2.4 Induced EMF in different configurations (moving conductors, changing magnetic fields).
 - 4.2.5 Self-induction and mutual induction.

	4 2 6 T f	a.
	4.2.6 Transformer	
	Working prin	nciples,
	construction	, and
	applications.	
	4.2.7 Step up and	step-
	down transfo	ormers
	4.2.8 Power losses	s in
	transformers	
	4.2.9 Calculations	
	involving	
	transformers	
	4.2.10 Energy store	d in
	magnetic fie	lds.
5. Apply basic electrical	5.1 DC Machines	
machines	5.1.1 DC machin	ne Portfolio of
	construction	on and evidence
	types (mot	ors and • Practical test
	generators). • Third party report
	5.1.2 Working p	
	of DC gene	• Project work
	and back E	
	5.1.3 Types of D	OC
	generators	: Series,
	shunt, and	
	compound	
	5.1.4 Working p	rinciple
	of DC mot	
	5.1.5 Types of D	OC
	motors: Se	
	shunt, and	
	compound	
	1	

- 5.1.6 Speed-torque characteristics of DC motors.
- 5.1.7 Performance analysis and efficiency of DC machines.
- 5.1.8 Starting methods for DC motors.
- 5.1.9 Hands-on lab:

 Testing and
 operating a DC
 motor/generator.
- 5.2 Induction Motors (AC Machines)
 - 5.2.1 Introduction to induction motors:

 Construction and working principles.
 - 5.2.2 Types of induction motors: Squirrel cage and wound rotor.
 - 5.2.3 Rotating magnetic fields and slip in induction motors.
 - 5.2.4 Equivalent circuit model of an induction motor.
 - 5.2.5 Torque-speed characteristics.

	5.2.6 Methods of	
	starting and speed	
	control.	
	5.2.7 Performance	
	analysis of	
	induction motors.	
	5.2.8 Losses and	
	efficiency	
	considerations.	
	5.3 Hands-on lab: Testing and	d
	operating an induction	
	motor.	
6. Apply electronics	6.1 Introduction to Electronic	
components	Components	Portfolio of
	6.1.1 Overview of	evidence
	electronics: What are	Practical test
	electronic	Third party report
	components?	Written tests
	6.1.2 Classification of	Project work
	components: Passive,	3
	active, and	
	electromechanical.	
	6.1.3 Introduction to circuit	t
	symbols and	
	schematic diagrams.	
	6.1.4 Basic electrical	
	quantities and units	
	(voltage, current,	
	resistance).	
	6.1.5 Understanding	
	datasheets and	
	component	
	specifications.	

- 6.1.6 Overview of testing and measurement tools (multimeters, oscilloscopes).
- 6.2 Passive Components
- 6.2.1 Resistors: Types, color codes, power ratings, and applications.
- 6.2.2 Capacitors: Types
 (ceramic, electrolytic,
 film), capacitance
 value, and working
 voltage.
- 6.2.3 Charging and discharging of capacitors in DC circuits.
- 6.2.4 Applications of capacitors in filtering, timing, and energy storage.
- 6.2.5 Inductors: Types, inductance value, and applications.
- 6.2.6 Inductor behavior in DC and AC circuits.
- 6.2.7 Introduction to filters:
 RC, RL, and RLC
 circuits.
- 6.3 Semiconductor Devices
- 6.3.1 Diodes: Introduction to PN junctions, characteristics, and

types (LEDs, Zener diodes, Schottky diodes).

- 6.3.2 Applications of diodes in rectification, voltage regulation, and signal clipping.
- 6.3.3 Transistors: Types
 (BJT and MOSFET),
 characteristics, and
 configurations.
- 6.3.4 Basic transistor circuits: Switches and amplifiers.
- 6.3.5 Hands-on lab:

 Building and testing simple diode and transistor circuits.
- 6.3.6 Special semiconductor devices: Thyristors,
 TRIACs, and optoelectronic devices.
- 6.3.7 Characteristics and applications in switching and control.
- 6.4 Integrated Circuits (ICs)
- 6.4.1 Overview of integrated circuits:Analog vs. digital ICs.
- 6.4.2 Operational amplifiers(Op-Amps):Characteristics andbasic configurations.

- 6.4.3 Applications of Op-Amps in signal processing.
- 6.4.4 Timers and oscillators: 555 timer IC and its applications.
- 6.4.5 Voltage regulators:

 Linear and switching regulators.
- 6.4.6 Introduction to data converters (ADC and DAC).
- 6.4.7 Digital ICs: Logic gates and flip-flops.
- 6.4.8 Applications of digital ICs in basic logic circuits.
- 6.4.9 Hands-on lab:

 Building circuits using

 Op-Amps, timers, and
 logic gates.
- 6.5 Electromechanical and Specialized Components
- 6.5.1 Relays: Types, operation, and applications in switching.
- 6.5.2 Switches and connectors: Types and usage in electronic circuits.
- 6.5.3 Transformers: Basic operation, step-

	up/step-down	
	functions, and	
	isolation.	
6.5.4	Displays: LED, LCD,	
	and seven-segment	
	displays.	
6.5.5	Circuit Design and	
	Practical Applications	
6.5.6	Basic circuit design	
	principles: Bread	
	boarding, PCB layout,	
	and soldering.	
6.5.7	Introduction to circuit	
	simulation tools (e.g.,	
	Multisim, LTSpice).	
6.5.8	Testing and	
	troubleshooting	
	techniques.	
6.5.9	Real-world	
	applications of	
	electronic	
	components.	
6.5.10	Building practical	
	projects: Power	
	supplies, audio	
	amplifiers, and sensor-	
	based circuits.	
6.5.11	Hands-on lab: Final	
	project assembly and	
	testing.	

Suggested Methods of Instruction

• Demonstration by trainer

- Practice by the trainee
- Field trips
- Discussions

Recommended Resources for 25 trainees

S/No.	Category/Item	Description/Specifications	Quantity	Recommended
				Ratio (Item: Trainee)
A	Learning Materials			Trainee)
1	Textbooks	Comprehensive texts on	5 pcs	1:5
1	Textoooks	electrical and control	J pes	1.0
		principle.		
2	Charts	Visual aids covering	10 pcs	1:2.5
		electrical theories and safety	-	
		protocols		
3	PowerPoint	For trainer's use, covering	1	1:25
	Presentations	course content and practical		
		applications		
В	Learning Facilities	<i>⊗</i> °		
	& Infrastructure			
1	Lecture/Theory	Equipped with projectors and	1	1:25
	Room	seating for 25 trainees, ~60		
		sqm		
2	Workshop	Hands-on training area with	1	1:25
		workbenches, tools, and		
		safety equipment, ~80 sqm		
3	Computer	Equipped with testing setups	25	1:1
	Laboratory	for electrical experiments,		
		~50 sqm.		
		Equipped with computers		
		installed with Circuit		
		simulation software.		
C	Consumable			
	Materials			

1	Electrical Wires	Assorted sizes and color-	5 rolls	1:5
		coded (e.g., 1.5mm ² , 2.5mm ² ,		
		4mm ²)		
2	Insulation Tapes	For securing connections and	25 pcs	1:1
		insulation, assorted colors		
3	Breadboard	For prototyping and testing	5 pcs	1:5
		circuits		
4	Sensors	Assorted types (temperature,	10 pcs	1:2.5
		pressure, proximity)		
5	Signal generators	For generating AC signals	5pcs	1:5
6	Transducers	Assorted	10 pcs	1:3
7	Electronic	Resistors, transistors,	100pcs	4:25
	components	capacitors, relays,		
		transformers. Integrated IC,		
		OPAM.		
D	Tools and	an		
	Equipment	- Street C		
1	Screwdrivers	Assorted sets for various	2 sets	1:12.5
		applications		
2	Side Cutters	For cutting wires and cables	4 pcs	1:6.25
3	Pliers	For gripping and bending	3 pcs	1:8.33
		wires		
4	Stripping Knives	For stripping insulation from	4 pcs	1:6.25
		wires		
5	Computers	Equipped with electrical and	5 pcs	1:5
		electronics simulation		
		software		
6	Multimeters	For measuring voltage,	5 pcs	1:5
		current, and resistance		
7	Clamp Meters	For measuring current flow	5 pcs	1:5
		in circuits		
8	Oscilloscope	For observing waveforms	1	1:25
		and signals		

9	Voltmeter	For measuring voltage	1	1:25
10	Ammeter	For measuring current	1	1:25
11	Signal Generator	For generating electrical	1	1:25
		signals for testing		
12	Soldering gun	For soldering	10	1:3
13	Soldering wire	For making joints in	10	1:3
		electrical circuits		
14	PLC	For program practice	5	1:5
15	Cells and batteries	For learning	5	1:5
E	PPE (Personal			
	Protective			
	Equipment)			
1	PPE Sets	Includes helmets, gloves,	25 sets	1:1
		safety goggles, shoes, and		
		harnesses		
2	Safety Signs and	For simulating safety zones	10 sets	1:2.5
	Barriers	and hazards		
3	Earthing Test Kits	For ground testing and	5 pcs	1:5
		demonstrating earthing		
		procedures		
4	Electrical Test	For hands-on testing of	5 pcs	1:5
	Benches	functionality and circuit		
		design		
F	Reference			
	Materials			
1	Industrial	Covering principles and	25 pcs	1:1
	Automation	practices in automation		
	Manuals			
2	Electrical Standards	Reference on industry	5 pcs	1:5
		standards (e.g., IEEE		
		Guidelines)		
3	Technical	On motors, drives, and	25 pcs	1:1
ı	Handbooks	wiring systems		

4	Training	Digital format for shared	1	1:25
	Presentations/Slides	access among trainees		
5	Multimedia	Digital licenses for videos	25 pcs	1:1
	Learning Modules	and tutorials		
6	Practical	Worksheets for practical	25 pcs	1:1
	Assessment Guides	assessments		

easythet.com