ELECTRICAL AND ELECTRONICS PRINCIPLES

UNIT CODE: 0713 441 15A

TVET CDACC UNIT CODE: ENG/CU/AUT/CC/05/5/MA

Relationship with Occupational Standards

This unit addresses the unit of competency: Apply Electrical and electronics principles.

Unit Duration: 80 Hours

Unit Description

This unit describes the competences required in order to apply electrical and electronics principles. It involves applying basic concepts of electrical quantities, cells and batteries, magnetism and electromagnetism, basic electrical machines and electronics principles.

Summary of Learning Outcomes

S/No.	Learning Outcomes	Duration (Hours)
1.	Apply basic concepts of electrical quantities	10
2.	Apply DC and AC circuits	10
3.	Apply the concept of cells and batteries	10
4.	Apply magnetism and electromagnetism	10
5.	Apply basic electrical machines	20
6.	Apply electronics components	20
	TOTAL	80

Learning Outcomes, Content and Suggested Assessment Methods

Learning Outcome	Content	Suggested Assessment Methods
1. Use the concept of basic	1.1 Basic SI Units	
Electrical quantities	1.1.1 Overview of SI Units	Portfolio of
	1.1.1.1 Power (Watts,	evidence
	W)	• Practical test
	1.1.1.2 Current	Third party report
	(Amperes, A)	• Written tests
	1.1.1.3 Resistance	Project work

 $(\overline{Ohms}, \Omega)$

1.1.1.4 Voltage (Volts,

V)

- 1.2 Conductors and Insulators
 - 1.2.1 Identification and

Characteristics

1.2.1.1 Metals vs. non-

metals

1.2.1.2 Applications in

electrical

circuits

- 1.3 Electrical Quantities
 - 1.3.1 Charge, Force,

Work, and Power

1.3.2 Definitions and

units

1.3.3 Calculations

involving Electrical

quantities

- 1.4 Ohm's Law
 - 1.4.1 Understanding

Ohm's Law

1.4.2 Practical

applications and

calculations

1.5 Basic Electrical and

Electronic Measurements

1.5.1 Measurement

Techniques

1.5.2 Use of Multimeters,

oscilloscopes, and

ammeters

1.5.3 Measurement

©TVET CDACC 2025 136

			accuracy and		
			calibration		
2. Apply DC and AC	2.1	Introduct	tion to Electrical	•	Oral questioning
circuits		Circuits		•	Portfolio of
		2.1.1	Introduction to		evidence
			electricity:	•	Practical test
		2.1.2	Voltage, current,	•	Third party report
			and power.	•	Written tests
		2.1.3	Overview of DC	•	Project work
			and AC circuits.		·
		2.1.4	Basic circuit		
			elements:		
			Resistors,		
			capacitors, and		
			inductors.		
	2.2	DC Circ	uit Analysis		
		2.2.1	Series and parallel		
		S _{U2}	circuits.		
		2.2.2	Voltage and current		
			division principles.		
		2.2.3	Kirchhoff's Voltage		
			Law (KVL) and		
			Kirchhoff's Current		
			Law (KCL).		
		2.2.4	Analysis of		
			complex circuits		
			using KVL and		
			KCL.		
		2.2.5	Hands-on lab:		
			Building and		
			testing DC circuits.		
	2.3		iits analysis		
		2.3.1	Introduction to AC:		

Sinusoidal
waveforms,
frequency, and
period.

- 2.3.2 RMS values, peak values, and average values.
- 2.3.3 AC voltage and current sources.
- 2.3.4 Phasor representation of AC quantities.
- 2.3.5 Impedance and admittance.
- 2.3.6 Series and parallel AC circuits.
- 2.3.7 Resonance in RLC circuits.
- 2.3.8 Practical analysis of AC circuits using phasors.
- 2.3.9 Power in AC Circuits
 - 2.3.9.1 Power factor and power factor correction.
 - 2.3.9.2 Real, reactive, and apparent power.
 - 2.3.9.3 AC power calculations for single-phase

	and these where	
	and three-phase	
	circuits.	
	2.3.9.4 Energy	
	consumption	
	and efficiency.	
	2.3.9.5 Applications of	
	AC power in	
	household and	
	industrial	
	settings.	
	2.4 Practical Activity:	
	2.4.1 Connection in	
	series and Parallel	
	Simulation	
3. Apply the concept of	3.1 Introduction to Cells and	
cells and batteries	Batteries	Portfolio of
	3.2 Overview of energy storage	evidence
	and electrochemical cells.	Practical test
	3.3 Basic concepts: Voltage,	
		• Third party report
	current, capacity, and energy	• Written tests
	density.	 Project work
	3.4 Internal resistance of cells and	
	electromotive force, e.m.f.	
	3.5 Electrochemical principles:	
	Redox reactions and electrode	
	potentials.	
	3.6 Components of a cell: Anode,	
	cathode, electrolyte, and	
	separator.	
	3.7 Types of cells: Primary vs.	
	secondary cells (non-	
	rechargeable vs. rechargeable).	
	3.8 Primary Cells (Non-	

Rechargeable)

- 3.8.1 Zinc-Carbon Cells:
 Construction,
 chemistry, and
 applications.
- 3.8.2 Alkaline Cells:
 Advantages over
 zinc-carbon, usage,
 and performance
 characteristics.
- 3.8.3 Comparison of common primary cells (e.g., lithium primary cells).
- 3.8.4 Performance limitations and efficiency of primary cells.
- 3.8.5 Environmental impact and disposal considerations for non-rechargeable batteries.
- 3.8.6 Hands-on lab:

 Testing the

 performance of

 different primary

 cells.
- 3.9 Secondary Cells (Rechargeable)
 - 3.9.1 Lead-Acid
 Batteries:
 Chemistry,

construction, and applications (e.g., automotive). 3.9.2 Nickel-Cadmium (NiCd) and Nickel-Metal Hydride (NiMH): Differences, pros, and cons. 3.9.3 Charging and discharging cycles of rechargeable cells. 3.9.4 Lithium-Ion Batteries: Working principles, construction, and applications. 3.9.5 Advantages of lithium-ion technology over older battery types. 3.9.6 Safety considerations: Overcharging, thermal runaway, and battery management systems. 3.9.7 Emerging Technologies: Solid-state

©TVET CDACC 2025

batteries, lithium-

sulphur, and other advancements.

3.9.8 Energy density and power density considerations in modern applications.

3.9.9 Batteries maintenance

3.9.10 Hands-on lab:

Disassembling and examining a rechargeable battery.

3.10 Battery Performance and Characteristics

3.10.1 Battery capacity:

Ampere-hour (Ah)
ratings and energy
content.

3.10.2 Factors affecting battery life:

Temperature,
charge/discharge
rates, and cycling.

3.10.3 Internal resistance and its effect on performance.

3.10.4 Battery efficiency and energy losses.

3.10.5 State of charge(SOC) and depth of discharge (DOD).

3.10.6 Battery degradation and aging mechanisms.

3.10.7 Measuring battery parameters (voltage, current, capacity).

3.10.8 Testing techniques for battery health and performance.

3.10.9 Hands-on lab:

Performance testing
of different battery
types.

3.11 Applications of Batteries

3.11.1 Batteries in consumer electronics (e.g., smartphones,

laptops).

3.11.2 Automotive applications:
Starting, lighting, and ignition (SLI) batteries.

3.11.3 Electric vehicles
(EVs) and hybrid
electric vehicles
(HEVs): Battery
requirements and
challenges.

3.11.4 Industrial and grid storage

applications.

3.11.5 Renewable energy integration: Solar and wind energy storage solutions.

3.11.6 Specialized applications:

Medical devices, aerospace, and military.

3.11.7 Case studies on battery failure and safety incidents.

3.11.8 Discussion on regulations and standards for battery use.

- 3.12 Environmental Impact and Recycling
 - 3.12.1 Environmental impact of battery production and disposal.
 - 3.12.2 Strategies for reducing the ecological footprint of battery technologies.
 - 3.12.3 Recycling processes for different types of batteries.

3.12.4 Government

	maliaise su 1	
	policies and	
	regulations	
	regarding battery	
	disposal.	
	3.12.5 Advances in battery	
	recycling	
	technologies.	
	3.13 Hands-on lab: Exploring	
	the recycling process and	
	evaluating eco-friendly battery	
	alternatives.	
4. Apply magnetism and	4.1 Magnetic Circuits and Devices	Oral questioning
electromagnetism	4.1.1 Introduction to	Portfolio of
-	magnetic circuits.	evidence
	4.1.2 Magnetic flux,	Practical test
	magnetic field	Third party report
	density, magnetic	Written tests
	field strength,	
	Reluctance,	Project work
	magnetomotive force	
	(MMF), and	
	magnetic flux.	
	4.1.3 Calculations	
	involving magnetic	
	circuits	
	electric and magnetic	
	circuits.	
	4.1.5 Magnetic materials in	
	electrical devices	
	(soft and hard	
	magnetic materials).	
	4.2 Electromagnetic Induction	

	4.2.1	Faraday's Law of	
		electromagnetic	
		induction.	
	4.2.2	Lenz's Law:	
		Direction of induced	
		EMF.	
	4.2.3	Practical	
		applications: Electric	
		generators and	
		transformers.	
	4.2.4	Induced EMF in	
		different	
		configurations	
		(moving conductors,	
		changing magnetic	
		fields).	
	4.2.5	Self-induction and	
	Ó	mutual induction.	
	4.2.6	Transformers:	
		Working principles,	
		construction, and	
		applications.	
	4.2.7	Step up and step-	
		down transformers	
	4.2.8	Power losses in	
		transformers.	
	4.2.9	Calculations	
		involving	
		transformers	
	4.2.10	Energy stored in	
		magnetic fields.	
5. Apply basic electrical	5.1 DC Mac	hines	
machines	5.1.1	DC machine	• Portfolio of

construction and types (motors and generators).

- 5.1.2 Working principle of DC generators and back EMF.
- 5.1.3 Types of DC generators: Series, shunt, and compound.
- 5.1.4 Working principle of DC motors.
- 5.1.5 Types of DC motors: Series, shunt, and compound.
- 5.1.6 Speed-torque characteristics of DC motors.
- 5.1.7 Performance analysis and efficiency of DC machines.
- 5.1.8 Starting methods for DC motors.
- 5.1.9 Hands-on lab:

 Testing and
 operating a DC
 motor/generator.
- 5.2 Induction Motors (AC Machines)
 - 5.2.1 Introduction to induction motors:

evidence

- Practical test
- Third party report
- Written tests
- Project work

	Construction and	
	working principles.	
	5.2.2 Types of induction	
	motors: Squirrel	
	cage and wound	
	rotor.	
	5.2.3 Rotating magnetic	
	fields and slip in	
	induction motors.	
	5.2.4 Equivalent circuit	
	model of an	
	induction motor.	
	5.2.5 Torque-speed	
	characteristics.	
	5.2.6 Methods of starting	
	and speed control.	
	5.2.7 Performance	
	analysis of	
	induction motors.	
	5.2.8 Losses and	
	efficiency	
	considerations.	
	5.3 Hands-on lab: Testing and	
	operating an induction	
	motor.	
6. Apply electronics	1.1 Introduction to Electronic	
components	Components	Portfolio of
	1.1.1 Overview of	evidence
	electronics: What	Practical test
	are electronic	Third party report
	components?	Written tests
	1.1.2 Classification of	Project work
	components:	

Passive, active, and electromechanical.

- 1.1.3 Introduction to circuit symbols and schematic diagrams.
- 1.1.4 Basic electrical quantities and units (voltage, current, resistance).
- 1.1.5 Understanding datasheets and component specifications.
- 1.1.6 Overview of testing and measurement tools (multimeters, oscilloscopes).
- 1.2 Passive Components
 - 1.2.1 Resistors: Types, color codes, power ratings, and applications.
 - 1.2.2 Capacitors: Types
 (ceramic,
 electrolytic, film),
 capacitance value,
 and working voltage.
 - 1.2.3 Charging and discharging of capacitors in DC circuits.
 - 1.2.4 Applications of capacitors in

filtering, timing, and energy storage.

- 1.2.5 Inductors: Types, inductance value, and applications.
- 1.2.6 Inductor behavior in DC and AC circuits.
- 1.2.7 Introduction to filters: RC, RL, and RLC circuits.

1.3 Semiconductor Devices

- 1.3.1 Diodes: Introduction to PN junctions, characteristics, and types (LEDs, Zener diodes, Schottky diodes).
- 1.3.2 Applications of diodes in rectification, voltage regulation, and signal clipping.
- 1.3.3 Transistors: Types
 (BJT and
 MOSFET),
 characteristics, and
 configurations.
- 1.3.4 Basic transistor circuits: Switches and amplifiers.
- 1.3.5 Hands-on lab:Building and testing simple diode and

transistor circuits.

1.3.6 Special

semiconductor

devices: Thyristors,

TRIACs, and

optoelectronic

devices.

1.3.7 Characteristics and

applications in

switching and

control.

1.4 Integrated Circuits (ICs)

1.4.1 Overview of

integrated circuits:

Analog vs. digital

ICs.

1.4.2 Operational

amplifiers (Op-

Amps):

Characteristics and

basic configurations.

1.4.3 Applications of Op-

Amps in signal

processing.

1.4.4 Timers and

oscillators: 555

timer IC and its

applications.

1.4.5 Voltage regulators:

Linear and switching

regulators.

1.4.6 Introduction to data

converters (ADC

and DAC).

- 1.4.7 Digital ICs: Logic gates and flip-flops.
- 1.4.8 Applications of digital ICs in basic logic circuits.
- 1.4.9 Hands-on lab:

 Building circuits
 using Op-Amps,
 timers, and logic
 gates.
- 1.5 Electromechanical and Specialized Components
 - 1.5.1 Relays: Types, operation, and applications in switching.
 - 1.5.2 Switches and connectors: Types and usage in electronic circuits.
 - 1.5.3 Transformers: Basic operation, step-up/step-down functions, and isolation.
 - 1.5.4 Displays: LED,LCD, and sevensegment displays.
 - 1.5.5 Circuit Design and Practical Applications1.5.6 Basic circuit design

152

principles: Bread boarding, PCB layout, and soldering. 1.5.7 Introduction to circuit simulation tools (e.g., Multisim, LTSpice). 1.5.8 Testing and troubleshooting techniques. 1.5.9 Real-world applications of electronic components. 1.5.10 Building practical projects: Power supplies, audio amplifiers, and sensor-based circuits. 1.5.11 Hands-on lab: Final project assembly and testing.

Suggested Methods of Instruction

- Demonstration by trainer
- Practice by the trainee
- Field trips
- Discussions

Recommended Resources for 25 trainees

S/No.	Category/Item	Description/Specifications	Quantity	Recommended
				Ratio (Item:

				Trainee)
A	Learning Materials			
1	Textbooks	Comprehensive texts on electrical and control principle.	5 pcs	1:5
2	Charts	Visual aids covering electrical theories and safety protocols	10 pcs	1:2.5
3	PowerPoint Presentations	For trainer's use, covering course content and practical applications	1	1:25
В	Learning Facilities & Infrastructure			
1	Lecture/Theory Room	Equipped with projectors and seating for 25 trainees, ~60 sqm	1	1:25
2	Workshop	Hands-on training area with workbenches, tools, and safety equipment, ~80 sqm	1	1:25
3	Computer Laboratory	Equipped with testing setups for electrical experiments, ~50 sqm. Equipped with computers installed with Circuit simulation software.	25	1:1
C	Consumable Materials			
1	Electrical Wires	Assorted sizes and color- coded (e.g., 1.5mm², 2.5mm², 4mm²)	5 rolls	1:5
2	Insulation Tapes	For securing connections and insulation, assorted colors	25 pcs	1:1
3	Breadboard	For prototyping and testing circuits	5 pcs	1:5
4	Sensors	Assorted types (temperature, pressure, proximity)	10 pcs	1:2.5
5	Signal generators	For generating AC signals	5pcs	1:5
6	Transducers	Assorted	10 pcs	1:3
7	Electronic components	Resistors, transistors, capacitors, relays, transformers. Integrated IC, OPAM.	100pcs	4:25
D	Tools and			

	Equipment			
1	Screwdrivers	Assorted sets for various applications	2 sets	1:12.5
2	Side Cutters	For cutting wires and cables	4 pcs	1:6.25
3	Pliers	For gripping and bending wires	3 pcs	1:8.33
4	Stripping Knives	For stripping insulation from wires	4 pcs	1:6.25
5	Computers	Equipped with electrical and electronics simulation software	5 pcs	1:5
6	Multimeters	For measuring voltage, current, and resistance	5 pcs	1:5
7	Clamp Meters	For measuring current flow in circuits	5 pcs	1:5
8	Oscilloscope	For observing waveforms and signals	1	1:25
9	Voltmeter	For measuring voltage	1	1:25
10	Ammeter	For measuring current	1	1:25
11	Signal Generator	For generating electrical signals for testing	1	1:25
12	Soldering gun	For soldering	10	1:3
13	Soldering wire	For making joints in electrical circuits	10	1:3
14	PLC	For program practice	5	1:5
15	Cells and batteries	For learning	5	1:5
E	PPE (Personal Protective Equipment)			
1	PPE Sets	Includes helmets, gloves, safety goggles, shoes, and harnesses	25 sets	1:1
2	Safety Signs and Barriers	For simulating safety zones and hazards	10 sets	1:2.5
3	Earthing Test Kits	For ground testing and demonstrating earthing procedures	5 pcs	1:5
4	Electrical Test Benches	For hands-on testing of functionality and circuit design	5 pcs	1:5
F	Reference Materials			

1	Industrial	Covering principles and	25 pcs	1:1
	Automation Manuals	practices in automation		
2	Electrical Standards	Reference on industry	5 pcs	1:5
		standards (e.g., IEEE		
		Guidelines)		
3	Technical	On motors, drives, and wiring	25 pcs	1:1
	Handbooks	systems		
4	Training	Digital format for shared	1	1:25
	Presentations/Slides	access among trainees		
5	Multimedia Learning	Digital licenses for videos and	25 pcs	1:1
	Modules	tutorials		
6	Practical Assessment	Worksheets for practical	25 pcs	1:1
	Guides	assessments		

