054206T4AST APPLIED STATISTICS LEVEL 6 MATH/OS/AS/CC/01/6/A APPLY MATHEMATICS FOR STATISTICS

July/August 2024



# TVET CURRICULUM DEVELOPMENT, ASSESSMENT AND CERTIFICATION COUNCIL (TVET CDACC)

# WRITTEN ASSESSMENT

## 3 HOURS

## **INSTRUCTIONS TO CANDIDATES**



- Answer ALL the questions in sections A and any THREE questions in section B in the answer booklet provided.
- 3. Marks for each question are indicated in brackets.
- 4. Do not write on this question paper.
- 5. Answer all the questions in **English.**

## This paper consists of FOUR (4) printed pages

Candidates should check the question paper to ascertain that all pages are printed as indicated and that no questions are missing.

#### **SECTION A (40 MARKS)**

Answer all questions in this section.

- Solve the equation  $(2x + 3) \log_3 9 + (4x 12) \log_2 4 = 6$ . 1. (5 marks) Given that  $\sin A = \frac{15}{17}$  and  $\cos B = \frac{12}{13}$ , where A is obtuse angle and B is acute angle, 2. determine  $\cos(B - A)$ . (5 marks) Find the derivative of  $f(x) = 3x^2$  from first principles. 3. (4 marks) A curve C has Cartesian equation  $(x^2 + y^2)^2 = a^2(x^2 - y^2), a \neq 0$ . Determine a polar 4. equation for C. (4 marks) Simplify by rationalizing the denominator  $\frac{5+2i}{3-i}$ . 5. (3 marks) Determine the middle term of binomial expression  $(2x + 3y)^6$ . 6. (4 marks) Solve the equation  $8^{x+1} + 2^{3x+1} = 160$ . 7. (4 marks) Determine the sum of the first 110 terms of the series  $21 + 25 + 29 + \cdots$  (3 marks) 8. Show that the iterative formula to estimate the root of  $2x^3 - 5x + 7 = 0$  is given by 9.  $x_{n+1} = \frac{4x_n^3 - 7}{6x_n^2 - 5}$ (4 marks)
- 10. Determine the values of  $\alpha$  and  $\beta$  given that  $5 \sinh x 3 \cosh x = \alpha e^x + \beta e^{-x}$ .

(4 marks)

### SECTION B (60 MARKS)

#### Answer any THREE questions in this section.

11. (a) Solve the following system of simultaneous equations by inverse matrix method.

(12 marks)

$$2x + 3y - z = 5$$
$$x - 2y + 4z = -2$$
$$3x + y + 2z = 8$$

(b) Find the particular solution of the differential equation  $\frac{dy}{dx} + 3y = 6x$  given that when x = 0, y = 2. (8 marks)

12. (a) Given vectors  $\overrightarrow{A} = 3i + 4j$  and  $\overrightarrow{B} = -2i + 6j$ . Find:

- (i) The magnitude of vector  $\vec{A}$ . (2 marks)
- (ii) The direction of vector  $\overrightarrow{B}$  in degrees. (3 marks)

(b) Figure 1 shows a system of forces acting on a welded joint.



Use resolution of forces to determine the magnitude of the resultant force. (6 marks)

(c) Table 1 shows data obtained from an experiment, determine the value of f(2.04) using Newton-Gregory backward interpolation method correct to 3 decimal places.

(9 marks)

| Ta   | ble 1  | De la companya |        |        |        |        |        |        |
|------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|--------|--------|--------|
| x    | 2.0    | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.2    | 2.3    | 2.4    | 2.5    | 2.6    | 2.7    |
| f(x) | 2.7183 | 2.8758                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.0042 | 3.1582 | 3.3201 | 3.4903 | 3.6693 | 3.8574 |

- 13. (a) An open rectangular box can hold 108 cm<sup>3</sup> of fluid. Use partial differentiation to determine the dimensions of the box, if the surface area of the material used to make the box is to be a minimum. (8 marks)
  - (b) Use De Moivre's theorem to show that  $\cos 5A = 16 \cos^5 A 20\cos^3 A + 5\cos A$ . (7 marks)
  - (c) A juice production company produces two types of juice, J<sub>1</sub> and J<sub>2</sub>. The production of the juice requires two types of raw materials, R<sub>1</sub> and R<sub>2</sub>. The availability of these raw materials requires the following:
    - Each unit of  $J_1$  requires 1 unit of  $R_1$  and 3 units of  $R_2$ .
    - Each unit of  $J_2$  requires 2 units of  $R_1$  and 1 unit of  $R_2$ .
    - The company has 8 units of  $R_1$  and 12 units of  $R_2$  available.
    - The profit from each unit of  $J_1$  is Ksh 20.
    - The profit from each unit of  $J_2$  is Ksh 25.

Formulate a linear programming problem using the simplex method to maximize the total profit. (5 marks)

14. (a) Determine the first four non zero terms of the Maclaurin's series for  $f(x) = \cos x$ .

(9 marks)

(b) Evaluate the integral 
$$\int_{0}^{\frac{\pi}{2}} (6 \sin 2x - \cos^2 x + 2) dx$$
 (5 marks)

(c) Convert  $0.\dot{4}\dot{5}$  into a fraction by use of geometric progression method. (6 marks)

THIS IS THE LAST PRINTED PAGE. 0354