APPLY ENGINEERING MATHEMATICS

UNIT CODE: ENG/AUT/CC/2/6

UNIT DESCRIPTION:

This unit describes the competencies required by a technician in order to apply algebra apply trigonometry and hyperbolic functions, apply complex numbers, apply coordinate geometry, carry out binomial expansion, apply calculus, solve ordinary differential equations, carry out mensuration, apply power series, apply statistics, apply numerical methods, apply vector theory and apply matrix.

ELEMENTS AND PERFORMANCE CRITERIA

ELEMENT	PERFORMANCE CRITERIA
These describe the key	These are assessable statements which
outcomes which make up	specify the required level of performance
workplace function.	for each of the elements.
_	Bold and italicized terms are elaborated
	in the Range.
1. Apply Algebra	1.1 Calculations involving Indices are
	performed as per the concept
	1.2 Calculations involving Logarithms
	are performed as per the concept
	1.3 Scientific calculator is used in
	solving mathematical problems in
	line with manufacturer's manual
	1.4 Simultaneous equations are
	performed as per the rules
	1.5 Quadratic equations are calculated as
	per the concept

ELEMENT	PERFORMANCE CRITERIA
These describe the key	These are assessable statements which
outcomes which make up	specify the required level of performance
workplace function.	for each of the elements.
	Bold and italicized terms are elaborated
	in the Range.
2. Apply Trigonometry	2.1 Calculations are performed using
and hyperbolic	trigonometric rules
functions	2.2 Calculations are performed using
	hyperbolic functions
3. Apply complex	1.1 Complex numbers are represented
numbers	using Argand diagrams
	1.2 Operations involving complex
	numbers are performed
	1.3 Calculations involving complex
	numbers are performed using De
	Moivre's theorem
4. Apply Coordinate	4.1 Polar equations are calculated using
Geometry	coordinate geometry
	4.2 Graphs of given polar equations are
	drawn using the Cartesian plane
	4.3 Normal and tangents are determined
	using coordinate geometry
5. Carry out Binomial	5.1 Roots of numbers are determined
Expansion	using binomial theorem
	5.2 Errors of small changes are
	determined using binomial theorem

ELEMENT	PERFORMANCE CRITERIA
These describe the key	These are assessable statements which
outcomes which make up	specify the required level of performance
workplace function.	for each of the elements.
	Bold and italicized terms are elaborated
	in the Range.
6. Apply Calculus	6.1 Derivatives of functions are
	determined using Differentiation
	6.2 Derivatives of hyperbolic functions
	are determined using Differentiation
	6.3 Derivatives of inverse trigonometric
	functions are determined using
	Differentiation
	6.4 Rate of change and small change are
	determined using Differentiation.
	6.5 Calculation involving stationery
	points of functions of two variables
	are performed using differentiation.
	6.6 Integrals of algebraic functions are
	determined using integration
	6.7 Integrals of trigonometric functions
	are determined using integration
	6.8 Integrals of logarithmic functions are
	determined using integration
	6.9 Integrals of hyperbolic and inverse
	functions are determined using
	integration
7. Solve Ordinary	7.1 First order and second order
differential equations	differential equations are solved
	using the method of undetermined
	coefficients
	7.2 First order and second order

ELEMENT	PERFORMANCE CRITERIA
These describe the key	These are assessable statements which
outcomes which make up	specify the required level of performance
workplace function.	for each of the elements.
	Bold and italicized terms are elaborated
	in the Range.
	differential equations are solved from
	given boundary conditions
8. Carry out	8.1 Perimeter and areas of figures are
Mensuration	obtained
	8.2 Volume and of Surface area of solids
	are obtained
	8.3 Area of irregular figures are obtained
	8.4 Areas and volumes are obtained
	using Pappus theorem
9. Apply Power Series	9.1 Power series are obtained using
	Taylor's Theorem
	9.2 Power series are obtained using
	McLaurin's 's theorem
10. Apply Statistics	10.1 Mean, median ,mode and Standard
	deviation are obtained from given
	data
	10.2 Calculations are performed based
	on Laws of probability
	10.3Calculation involving probability
	distributions, mathematical
	expectation sampling distributions
	are performed
	10.4 Sampling distribution methods are
	applied in data analysis
	10.5 Calculations involving use of
	standard normal table, sampling

ELEMENT	PERFORMANCE CRITERIA
These describe the key	These are assessable statements which
outcomes which make up	specify the required level of performance
workplace function.	for each of the elements.
	Bold and italicized terms are elaborated
	in the Range.
	distribution, T-distribution and
	estimation are done
	10.6 Confidence intervals are determined
11. Apply Numerical	11.1 Roots of polynomials are obtained
methods	using iterative numerical methods
	11.2 Interpolation and extrapolation are
	performed using numerical methods
12. Apply Vector theory	12.1 Vectors and scalar quantities are
	obtained in two and three
	dimensions
	12.2 Operations on vectors are
	performed
	12.3 Position of vectors is obtained
	12.4 Resolution of vectors is done
13. Apply Matrix	13.1Determinant and inverse of 3x3
	matrix are obtained
	13.2Solutions of simultaneous equations
	are obtained
	13.3Calculation involving Eigen values
	and Eigen vectors are performed

RANGE

This section provides work environments and conditions to which the performance criteria apply. It allows for different work environments and situations that will affect performance.

Va	riable	Range
1.	Operations may include but not	1.1. Addition
	limited to:	1.2. Subtraction
2.	Hyperbolic functions may	2.1. Sinh x
	include but not limited to:	2.2. Cosh x
		2.3. Cosec x
		2.4. Coth x
		2.5. Tanh x
		2.6. Sech x
3.	Probability Distributions may	3.1. Binomial
	include but not limited to:	3.2. Poisson
		3.3. Normal
4.	Numerical Methods may include	4.1. Newton Raphson
	but not limited to:	4.2. Gregory Newton

REQUIRED SKILLS AND KNOWLEDGE

This section describes the skills and knowledge required for this unit of competency.

Required Skills

The individual needs to demonstrate the following skills:

- Applying fundamental operations (addition, subtraction, division, multiplication)
- Using and applying mathematical formulas
- Logical thinking
- Problem solving
- Applying statistics

- Drawing graphs
- Using different measuring tools

Required knowledge

The individual needs to demonstrate knowledge of:

- Fundamental operations (addition, subtraction, division, multiplication)
- Calculating area and volume
- Types and purpose of measuring instruments
- Units of measurement and abbreviations
- Rounding techniques
- Types of fractions
- Types of tables and graphs
- Presentation of data in tables and graphs
- Vector operations
- Matrix operations

EVIDENCE GUIDE

This provides advice on assessment and must be read in conjunction with the performance criteria, required skills and knowledge and range.

1. Critical aspects of	Assessment requires evidence that the
Competency	candidate:
	1.4 Applied Trigonometry and
	hyperbolic functions
	1.5 Applied complex numbers
	1.6 Applied Calculus
	1.7 Solved Ordinary differential
	equations
	1.8 Carried out mensuration
	1.9 Applied Power Series
	1.10 Applied Vector theory

		1.11 Applied Matrix
		1.12 Applied Numerical methods
2.	Resource Implications	The following resources should be
		provided:
		2.1 Access to relevant workplace or
		appropriately simulated environment
		where assessment can take place
		2.2 Measuring equipment
		2.3 Materials relevant to the proposed
		activity or tasks
3.	Methods of Assessment	Competency in this unit may be
		assessed through:
		1.1 Direct Observation
		1.2 Demonstration with Oral
		Questioning
		1.3 Written tests
4.	Context of Assessment	Competency may be assessed
		individually in the actual workplace or
	Ø.	through accredited institution
5.	Guidance information for	Holistic assessment with other units
	assessment	relevant to the industry sector,
		workplace and job role is recommended.