1503/203 MATHEMATICS II June/July 2018 Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

CRAFT CERTIFICATE IN AUTOMOTIVE ENGINEERING MODULE II

MATHEMATICS II

3 hours

INSTRUCTIONS TO CANDIDATES

You should have mathematical tables/scientific calculator for this examination.

Answer any FIVE of the following EIGHT questions in the answer booklet.

All questions carry equal marks.

Maximum marks for each part of a question are as indicated.

Candidates should answer the questions in English.

This paper consists of 4 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

© 2018 The Kerner Nettional Prominations Committee

1. (a) Given the matrix
$$A = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$
,

show that
$$A^3 - 3A^2 - 7A - 3I = 0$$
, where I is an identity matrix

(9 marks)

(b) The stability of a mechanical system requires the application of three forces which satisfy the simultaneous equations.

$$2F_1 + 2F_2 + F_3 = 9$$

 $F_1 + F_2 + 2F_3 = 9$
 $2F_1 + F_2 + 2F_3 = 10$
 $F_1 = 1$
 $F_2 = 2$
 $F_3 = 3$

where F₁, F₂ and F₃ are in newtons. Use the inverse matrix method to determine the values of the forces. (11 marks)

2. (a) Prove the identities:

(i)
$$\frac{\sin\theta + \cos\theta}{\sin\theta} - \frac{\cos\theta - \sin\theta}{\cos\theta} = \sec\theta \csc\theta$$

(ii)
$$\frac{\cos\theta + \sin\theta - \sin^3\theta}{\sin\theta} = \cot\theta + \cos^2\theta$$

(6 marks)

(b) Given that A, B and C are angles of a triangle, prove that

$$\sin A + \sin(B - C) - 2\sin B\cos C$$

(4 marks)

- (c) Solve the equations:
 - (i) $2\sin\theta = \cos(0 60^\circ)$
 - (ii) $\cos\theta + \cos 3\theta = 0$, for values of θ between 0° and 360° .

(10 marks)

- (a) (i) Determine the middle term in the binomial expansion of (2y + 3x)³.
 - (ii) Find the value of the term in (i) when $x = \frac{1}{2}$ and $y = \frac{1}{3}$.

(6 marks)

- (b) Find the first four terms in the binomial expansion of $(1+\frac{1}{2}x)^{\frac{1}{2}}$. (3 marks)
- (c) (i) Use the binomial theorem to expand $\sqrt{\left(\frac{1+3x}{1-3x}\right)}$ as far as the term in x^3 .
 - (ii) By setting $x = \frac{1}{18}$ in the result in (i), determine the approximate value of $\sqrt{31}$, correct to four decimal places.

(11 marks)

- 4. (a) Find $\frac{dy}{dx}$ from first principles, given that $y = \frac{1}{4-x}$.

(5 marks)

Use implicit differentiation to determine the values of:

- (i) $\frac{dy}{dx}$
- (ii) $\frac{d^2y}{dv^2}$

at the point (0, -1) on the curve $x^2 + 2y^2 - 4xy + 6x - 2y = 4$. (8 marks)

- Determine the stationary points of the curve $f(x) = x^3 + 9x^2 21x + 3$, and state their (c) nature. (7 marks)
- 5. (a) Solve the equations:
 - (i) $\frac{3}{x+2} \frac{2}{x+3} = \frac{1}{2}$
 - (ii) $3(3^{2a})-7(3^{a})+2=0$

(12 marks)

Three currents I1, I2 and I3 in amperes, in an electrical network satisfy the simultaneous equations:

$$I_1 + I_2 - 2I_3 = 1$$

 $-I_1 + 3I_2 + I_3 = 6$
 $I_1 - I_2 + 3I_3 = 2$

Use the method of elimination to determine the values of the currents.

(8 marks)

6. Determine the values of P and Q such that $5\sinh x - 3\cosh x = Pe^x + Qe^{-x}$. (a)

(4 marks)

- (b) Prove the identities:
 - (i) $\cosh^2 x \sinh^2 x = 1$
 - (ii) $\tanh 3x = \frac{3\tanh x + \tanh^3 x}{1 + 3\tanh^2 x}$

(7 marks)

Express cosh-1x in logarithmic form, and hence determine the value of cosh-1(2), (c) correct to three decimal places. (9 marks)

- 1.
- (a) Given the vectors $\underline{A} = 2\underline{i} 3\underline{j} + 2\underline{k}$ and $\underline{B} = 4\underline{i} + 2\underline{j} 3\underline{k}$, determine:
 - (i) a unit vector perpendicular to A and B.
 - (ii) the angle between A and B.

(14 marks)

205

Temperature distribution in a workshop is given by the scalar function $T(x, y, z) = x^2y + 2xz^2$. Determine the magnitude of ∇T at the point (1, 2, 3).

(6 marks)

- 8. (a) Evaluate the integrals:
 - (i) $\int_{0}^{1} \frac{x^{-2} 2x^{-1} + 3}{x^{-2}} dx$
 - (ii) $\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} (3\sin^2 x 4\cos x + 2x) dx$

(9 marks)

- (b) Use integration to determine the area of the region below the curve $y=4-x^2$ between the points x=-2 and x=2. (4 marks)
- (c) Locate the stationary points of the function $x^2 2y^2 + 4xy 6x + 12y$, and determine their nature. (7 marks)

THIS IS THE LAST PRINTED PAGE.