5.1.0 MATHEMATICS I

5.1.1 Introduction

This module unit is designed to equip the trainee with the relevant mathematical knowledge, skills techniques and attitudes necessary to enhance better understanding of construction principles.

5.1.2 General Objectives

By the end of module unit, the trainee should be able to:
a) Use mathematical concepts and techniques in solving problems related to respective trade area
b) Organize, draw simple deductions and conclusions from the given data
c) Interpret graphical representation of functions relevant to the respective trade area

5.1.3 Module Unit Summary and Time Allocation

Mathematics I

Code	Sub-Module Unit	Content	$\begin{gathered} \text { Time } \\ \text { (Hours) } \end{gathered}$
5.1.01	Numbers	- Types of numbers - Operation on integers - GCD/HCF of a set of numbers - LCM of a set of numbers	4
5.1.02	Fractions and Decimals	- Types of fractions - Operations on fractions - Operations on decimals - Numbers in standard form - Rounding off numbers - Conversion of fractions to decimals and vice versa - Application of decimals and fractions knowledge to real life	8
5.1.03	Indices and Logarithms	- Base and index - Laws of indices - Application of laws of indices - Laws of logarithms - Application of laws of logarithms - Base change of a logarithm - Natural logarithms - Scientific calculator	8

Code	Sub-Module Unit	Content	Time (Hours)
5.1.04	Algebra	- Expression, equation and an identity - Simple equations - Manipulations of algebraic expressions - Factorisation of algebraic expressions - Transposition of formulae - Simultaneous equations with two unknowns - Quadratic equations	9
5.1.05	Sequence and Series	- Distinction between a sequence and a series - Solving of problems involving arithmetic and geometric progression - Calculating simple and compound interests	9
5.1.06	Mensuration	- Units of measurrements - Perimeters and areas of regular figures - Volumes of regular solids - Surface areas of regular solids - Areas of irregular figures	9
5.1.07	Graphs	- Plotting linear graphs - Making interpretations from linear graphs - Solution of simultaneous equation and quadratic equations by plotting graphs - Presentation of data in appropriate charts	8
5.1.08	Elementary Statistics	- Definition of common terms in statistics - Frequency table - Calculation of central tendencies	3
5.2.09	Trigonometry	- Conversion of degrees to radians and vice versa - Trigonometric ratios and their reciprocals	8

Code	Sub-Module Unit	Content	$\begin{gathered} \hline \text { Time } \\ \text { (Hours) } \\ \hline \end{gathered}$
		- Solution of right-angled triangles - Angles of elevation and depression - Determination of trigonometric ratios of angles greater than 900 - Solution of triangles - Proof of simple trigonometric identities using Pythagoras theorem - Compound angle formulae - Derivation of double angle formulae - Solution of simple trigonometric equations of the form - $a \sin x b \cos x=c$ - Construction of sine and cosine waves	
Total			66

5.1.01 NUMBERS

5.1.01C Competence

The trainee should have the ability to apply the knowledge of G.C.D and
L.C.M in real life
situations

Theory

5.1.01T0 Specific Objectives By the end of this submodule unit, the trainee should be able to;
a) identify the various types of numbers
b) carry out arithmetic operations on integers
c) find the Greatest Common Divisor/ Highest Common Factor (G.C.D/ H.C.F) of a set of numbers
d) find the Least Common Multiple (L.C.M) of a set of numbers

Content
5.1.01T1 Types of numbers
5.1.01T2 Operation on integers
5.1.01T3 Greatest Common

Division/ Highest
Common Factor
G.C.D/ H.C.F) of a set of numbers
5.1.01T4 Least Common Multiple
(L.C.M) of a set of number lines

Suggested Teaching /
Learning Activities

- Illustration
- Discussion
- Demonstration
- Taking notes
- Write numbers

Suggested Teaching /
Learning Resources

- Chart illustrations
- Text books

Suggested Assessment
Methods

- Written tests

5.1.02 FRACTIONSAND
 DECIMALS

5.1.02C Competence

The trainee should have the ability to:
a) Apply the knowledge of fractions and decimals in solving engineering problems
b) Perform operations on fractions and decimals

Theory

5.1.02T0 Specific objectives By the end of this submodule unit, the trainee should be able to;
a) identify various types of fractions
b) perform operations on fractions in the correct order
c) perform operations on decimals in the correct order
d) express numbers in their standard form
e) round off numbers to the required numbers of decimal places
f) convert fractions to decimals and vice versa
g) solve problems related to fractions and decimals

Content

5.1.02T1 Types of fractions
5.1.02T2 Operations on fractions
5.1.02T3 Operations on decimals
5.1.02T4 Numbers in standard form
5.1.02T5 Rounding off numbers
5.1.02T6 Conversion of fractions to decimals and vice versa
5.1.02T7 Application of decimals and fractions knowledge to real life

Suggested Teaching/
Learning Activities

- Question and answer
- Exercises

Suggested Teaching /
Learning Resources

- Chart illustrations

Suggested Assessment
Methods

- Written tests
5.1.03 INDICES AND LOGARITHMS

5.1.03 C Competence

The trainee should have the ability to solve mathematical problems related to indices and logarithms

Theory

5.1.03 Specific Objectives By the end of this subshould be able to;
a) define base and index
b) state the laws of indices
c) apply the laws of indices in calculations
d) state the laws of logarithms
e) apply the laws of logarithms in calculations
f) change base of a logarithms

	g)perform operations on natural logarithms Content	simultaneous and quadratic equations
5.1.03T1	Base and index	
Theory		

	ii) substitution method		b) solve elementary
5.1.04T7	Quadratic equation		problems involving
	i) factorization		arithmetic and
	ii) completing the		geometric
	square		progression
	iii) quadratic formula		c) apply knowledge of
			series in calculating
	Suggested Teaching /		simple and
	Learning Activities		compound interests
	- Question and		
	answer		Content
	Sketching	5.1.05T1	Distinction between a
	Doing exercises		sequence and a series
		5.1.05T2	Solving of problems
	Suggested Teaching /		involving arithmetic
	Learning Resources		and geometric
	- Chart illustrations		progression
	Text books	5.1.05T3	Calculating simple and compound interests
	Suggested Assessment	O	
	Method		Suggested Teaching/
	- Written tests		Learning Activities
5.1.05	SEQUENCE AND SERIES		- Question and answer - Exercises
5.1.05C	Competence		Suggested Teaching
	The trainee should have		Learning Activities
	the ability to apply the		- Text books
	knowledge of sequence		
	and series to solve		Suggested Assessment
	building construction		Methods
	problems		- Written texts
	Theory	5.1.06	MENSURATION
5.1.05T0	Specific Objectives	5.1.06C	Competence
	By the end of this sub-		The trainee should have
	module unit, the trainee		the ability to apply the
	should be able to:		knowledge of
	a) distinguish between		mensuration to solve
	a sequence and a		building construction
	series		problems

Theory

5.1.04T0 Specific Objectives By the end of this submodule unit, the trainee should be able to;
a) state different units of measurements
b) calculate perimeters and areas of regular figures
c) determine volumes of regular solids
d) determine surface areas of regular solids
e) determine areas of irregular figures

Content
5.1.06T1 Units of measurements
5.1.06T2 Perimeters and areas of regular figures
i) rectangle/ squares
ii) triangle
iii) trapezium
iv) parallelogram/rho mbus
v) sector
vi) segment
vii) annulus
5.1.06T3 Volumes of regular solids
5.1.06T4 Surface areas of regular solids
i) prisms
ii) cones
iii) pyramids
iv) frustums
v) spheres
5.1.06T5 Areas of irregular figures by the following methods
i) trapezoidal rule
ii) mid-ordinate rule
iii) Simpsons rule

Suggested Teaching/
Learning Activities

- Question and answer
- Sketching
- Doing exercises

Suggested Teaching /
Learning Resources

- Chart illustrations

Suggested Assessment
Methods

- Written tests

5.1.07 GRAPHS AND CHARTS

5.1.08 C Competence

The trainee should have the ability to apply the knowledge of graphs to solve building construction problems

Theory
5.1.07T0 Specific Objectives By the end of this submodule unit, the trainee should be able to;
a) plot linear graph
b) interprete linear graphs
c) solve simultaneous equation and quadratic equations

Suggested Assessment
Methods

- Oral tests
- Written tests

5.1.09 TRIGONOMETRY

5.1.09C Competence

The trainee should have the ability to use the knowledge of trigonometry to solve engineering problems
5.1.09T0 Specific objectives By the end of the submodule unit, the trainee should be able to;
a) convert degrees to radians and vice versa
b) determine trigonometric ratios and their reciprocals
c) solve right-angled triangles
d) calculate angles of elevation and depression
e) determine trigonometric ratios of angles greater than 90°
f) solve triangle by use of sine and cosine rules
g) prove simple trigonometric identities
h) determine the compound angle formulae
i) derive simple double angle formulae
j) solve simple trigonometric equations
iii) construct sine and cosine waves

Content
5.1.09T1 Conversion of degrees to radians and vice versa
5.1.09T2 Trigonometric ratios and their reciprocals
i) sine
ii) cosine
iii) tangent
iv) cosecant
v) secant
vi) cotangent
5.1.09T3 Solution of right-angled triangles by using;
i) pythagoras theorem
ii) trigonometric ratios
5.1.09T4 Angles of elevation and depression
5.1.09T5 Determination of trigonometric ratios of angles greater than 90°
i) CAST rule
5.1.09T6 Solution of triangle
i) sine
$\underline{a}=\underline{b}=\underline{c}$
$\operatorname{Sin} A \operatorname{Sine} B \operatorname{Sin} C$
ii) cosine rules
$\mathrm{a}^{2}=\mathrm{b}^{2}+\mathrm{c}^{2}-2 \mathrm{bc} \operatorname{Cos}$
A
iii) $\mathrm{b} 2=\mathrm{a} 2+\mathrm{c} 2-2 \mathrm{ac} \operatorname{Cos}$ B
iv) $\mathrm{c} 2=\mathrm{a} 2+\mathrm{b} 2-2 \mathrm{ab}$ Cos C
5.1.09T7 Proof of simple trigonometric identities using Pythagoras theorem
i) $\operatorname{Sin} 2 x+\operatorname{Cos} 2 x=1$
ii) $1+\operatorname{Tan} 2 x=\operatorname{Sec} 2 x$
iii) $1+\operatorname{Cos} 2 x=\operatorname{Cos} 2 x$
5.1.09T8 Compound angle formulae
i) $\operatorname{Sin}(\mathrm{A}+\mathrm{B})=\operatorname{Sin} \mathrm{A} \pm$ $\operatorname{Sin} B \operatorname{Cos} A$
ii) $\operatorname{Cos}(\mathrm{A}+\mathrm{B})=\operatorname{Cos} \mathrm{A}$ $\pm \operatorname{Sin} \mathrm{A} \operatorname{Sin} \mathrm{B}$
iii) $\operatorname{Tan}(\mathrm{A}+\mathrm{B})=\operatorname{Tan} \mathrm{A}$ $+\operatorname{Tan} B$
iv) $1-\operatorname{Tan} \mathrm{A} \operatorname{Tan} \mathrm{B}$ $1+\operatorname{Tan} \mathrm{A}$ Tan B
5.1.09T9 Derivation of double angle formulae
i) $\operatorname{Sin} 2 \mathrm{~A}=2 \operatorname{Sin} \mathrm{~A} \operatorname{Cos}$ A
ii) $\operatorname{Cos} 2 \mathrm{~A}=\operatorname{Cos} 2 \mathrm{~A}-$ $\operatorname{Sin} 2 \mathrm{~A}$

$$
=1-2 \operatorname{Sin} 2 \mathrm{~A}
$$

$$
=2 \operatorname{Cos} 2 \mathrm{~A}-
$$

$$
1
$$

iii) $\tan 2 \mathrm{~A}=2 \tan \mathrm{~A}$
iv) $1-\tan 2 \mathrm{~A}$
v) $1+\tan 2 \mathrm{~A}$
5.1.09T10 Solution of simple trigonometric equations of the form $a \operatorname{Sin} x+b \operatorname{Cos} x=c$
5.1.09T11 Construction of sine and cosine waves
i) $0^{0} \leq \mathrm{x} \leq 360^{\circ}$
ii) Amplitude
iii) Phase angle

Suggested Teaching /
Learning Activities

- Questions and answers
- Lectures
- Assignments
- Doing exercises
- Graphs
- Plotting

Suggested Teaching /
Learning Resources

- Charts
- Scientific calculator
- Mathematical sets
- Text books

Suggested Assessment Methods

- Written tests

