1704/102
MATHEMATICS I AND
PHYSICAL SCIENCE
June/July 2016
Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

CRAFT CERTIFICATE IN BUILDING TECHNOLOGY MODULE I

MATHEMATICS I AND PHYSICAL SCIENCE

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:
Answer booklet;
Mathematical tables/Scientific calculator.
This paper consists of EIGIIT questions in TWO sections; \mathbf{A} and \mathbf{B}.
Answer any FIVE questions; choosing at least TWO questions from Section A, TWO questions from
Section B and ONE question from either section in the answer booklet provided.
All questions carry equal marks
Maximum marks for each part of a question are as indicated.
Candidates should answer the questions in English.

This paper consists of 6 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

SECTION A: MATHEMATICS

Answer at least TWO questions from this section.

1. (a) A piece of timber 273 cm long is cut into three pieces in the ratio of $3: 8: 10$. Determine the lengths of each of the three pieces.
(6 marks)
(b) A storage tank holds 450 litres of water when it is three-quarters full. Determine how much water it would contain when it is two thirds full.
(2 marks)
(c) Three firms P, Q and R contribute to a fund. P contributes $\frac{1}{2}$ of the total, Q contributes $\frac{3}{3}$ of the reminder while R contributed $\mathrm{Ksh} .800,000$. Determine the total amount raised.
(4 marks)
(d) Solve: $2^{2 n 1}=3^{\text {si }}$ correct to 4 significant figures.
(8 marks)
2. (a) If $\mathrm{T}=\frac{\lambda(x-c)}{c}$, make \times the subject of the formula.
(b) Determine the roots of the equation $x^{1}-4 x+4=0$ by factorisation.
(3 marks)
(c) The compound C, H, reacts with oxygen in proportion given by the equations

$$
\begin{aligned}
& 40 y-6 z=60 \\
& 30 y+5 z=140
\end{aligned}
$$

Determine y and z, hence the formula $\mathrm{C}_{3} \mathrm{H}_{2}$.
(d) (i) Find the sum of the first eight terms of the geometrical progression. $2+6+18+\frac{32}{1}$
in un engineering process two variables x and y are related by $y=a x+\frac{b}{x}$
where a and b are constants.
Find a and b, if $y=15$ when $x=4$ and $y=12$ when $x=2$.

13^{2}
(c) The area of a metal plate is $576 \mathrm{~mm}^{2}$. If its length is 48 mm , find its width,
(a) A block of copper weighing 30 kg is drawn out to make 500 m of wire of uniform circular cross-section. Given that $1 \mathrm{~cm}^{3}$ of copper weighs 8.91 g , calculate the:
(i) volume of the copper in cm^{\top}
(ii) area of the cross-section of the wire in cm^{2}
(b) A rectangular piece of metal with dimensions 4.5 cm by 7.5 cm by 12 cm is melted down and recast into a square pyramid of perpendicular height 150 cm . Find the area of

$$
\begin{array}{rlrl}
15 & 2 & =a(x)+b / \mu \\
x_{1}{ }^{2} & -b / 4 & =a x-w a_{1}
\end{array}
$$

$$
a \cdot
$$

(c) The angle of depression of a car viewed at a particular instant from the top of a 45 m high vertical building is 27°. Find the distance of the car from the building at this instant.
(d) Find the area of a regular hexagon which has sides 8 cm .
(e) Evaluate $\frac{4 \operatorname{Sin} 60^{\circ}}{\operatorname{Cos} 45^{\circ}}$ without using a calculator and leave the answer in surd form.
(4 marks)
4. (a) In triangle ABC , angle $\mathrm{ACB}=90^{\circ}$, angle $\mathrm{ABC}=42^{\circ}$ and $\mathrm{BC}=6.2 \mathrm{~cm}$. Find the length of $A C$.
(2 marks)
(b) If $\tan (A+B)=1.8$ and $\tan \mathrm{A}=0.6$, calculate $\tan \mathrm{B}$.

(c) Given that $\theta=36^{\circ}$, show that $\operatorname{Cos}^{2} \theta+\sin ^{2} \theta=1$ is valid for the given value of θ
(4 marks)
(d) The following frequency distribution represents the marks of students in a certificate class.

Marks Cu.	Number of students
$10-20$	5
$20-30$	10
$30-40$	172
$40-50$	12
$50-60$	60
Calculate the mode of the distribution.	

(4 marks)

(e) Examination marks in mathematics for 35 students were recorded ax shown in Table 2.

Table 2

(i) Prepare a frequency distribution table using a class interval of 10 .
(ii) From part (i) above, calculate the median.

1704/102
Jursel/July 2016

$$
\begin{aligned}
& 54 \\
& 53 \\
& \frac{65}{11} \\
& \begin{array}{l}
3 \\
+1 \\
2
\end{array}
\end{aligned}
$$

Turn over

SECTION B: PHYSICAL SCIENCE

Answer at least TWO questions from this section.

5. (a) Define the terms:
(i) atom;
(ii) element;
(iii) compound;
(iv) mixture.
(b) Differentiate between physical and chemical changes of matter giving two examples of each.
(c) (i) Explain the two methods used in the preparation of insoluble salts.
(ii) Write a balanced chemical equation for the reaction between lead nitrate and sodium sulphates.
(d) State any four properties of acids.
(4 marks)
6. (a) (i) Describe the three states of matter,
$\mathrm{Na}=9$
(6 marls)
(ii) Explain how a centrifuge can be used to separate a solid and liquid mixture.
(5 marks)
(b) State the SI units for the following physical quantities:
(i) lengthy;
(ii) mass;
(iii) time;
(iv) volume.
(c) Figure I shows a uniform horizontal beam supported at each end by pillars. Determine the reaction forces in the supporting pillars R_{L} and R_{R} :
(6 marks)

Fer 1
(d) An object of mass 5.3 kg is hung at the 25 cm mark of a meter rule pivoted at its centre. Find the moment due to the object ($1 \mathrm{~kg}=9.81 \mathrm{~N}$).
7. (a) A body is projected upwards with a velocity of $45 \mathrm{~m} / \mathrm{sec}$ from the top of a tower 90 metres high. Determine the:
(i) time it takes to reach the ground;
(ii) velocity at which the body strikes the ground.

(6 marks)
(b) (i) A steel rod used in the construction of 1.2 metres long support is subjected to a maximum load of 4.4 kN . If the extension of the rod is not to exceed 0.383 mm and Young's modulus, $\mathrm{E}=200 \mathrm{Gpa}$, determine the diameter of the rod.
(ii) Table 1 shows the result obtained during a tensile test on a steel rod of 1128 mm diameter. Draw the load-extension graph and from the graph, determine the stress at the elastic limit.
(B) maris)

Table 1

Load (kN)	4	8	12	16	20	24	28
Extension (mm)	0.01	0.02	0.03	0.04	0.05	0.06	0.08

(c) (i) A machine with a velocity ration of 5 requires 1000 Joules of work to raise a load of 500 N through is vertical distance of 1.5 metres. Determine the:
(I) efficiency;
(II) mechanical advantage of the machine.
(ii) The handle of a screw jack is 35 cm long and the pitch of the screw is 0.5 cm . Determine the velocity ratio of the system.
8. (a) A body of weight 400 N is prevented from sliding down a plane inclined at 10° to the horizontal by a force of 45 N acting upwards and parallel to the plane, Calculate the coefficient of friction
(b) (i) Explain the importance of density measurement to a structural engineer.
(ii) A body of mass 0.8 kg -suspended by a string is totally immersed in water. If the tension in the string is 4 N , determine the:
(I) volume;
(II) density of the body.
(c) Explain the following terms:
(i) Potential energy:
(ii) Kinetic energy.
(d) With the aid of a diagram, explain the construction and operation of a simple mercury barometer.

THIS IS THE LAST PRINTED PAGE.

