

THE KENYA NATIONAL EXAMINATIONS COUNCIL

CRAFT CERTIFICATE IN BUILDING TECHNOLOGY

MODULE I
MATHEMATICS I AND PHYSICAL SCIENCE
3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination: Answer booklet:
Mathematical tablesscientific calculator:
Drawing instruments.
This paper consists of EIGHT questions in TWO sections; \boldsymbol{A} and \boldsymbol{B}.
Answer TWO questions from section A, TWO questions from section B and ONE other question from either section.
All questions carry equal marks.
Maximum marks for each part of a question are indicated.
Candidates should answer the questions in English.

This paper consists of 5 printed pages.
Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

SECTION A: MATHEMATICS I

Answer at least TWO questions from this section.

1. (a) Evaluate without using mathematical tables.
(i) $\quad \log _{3} 24^{2}$
(4 marks)
(ii) $\quad \log _{10} 125+\log _{10} 8$.
(b) Solve $4^{2 x-3}=8^{n+1}$.
(c) Make y the subject of the formula, then find the value of y in $m=5 y-n^{2}$ when $\mathrm{m}=1, \quad \mathrm{n}=-3$.
(4 marks)

(d) Solve the following simultancous equations:
4.an $2 x+5 y=-11$
$x-y=5$.

(a) The base of a regular pyramid is 6 cm by 8 cm and its height is 14 cm . Find the total surface are and volume of the pyramid.
(b) Calculate the area of the shaded segment in the figure 1 below:
(14 marks) $-c=2$
(6 marks)

2. The following are the marks scored by 40 students in an examination:

55	82	92	75	67	66	71	81
63	90	89	72	68	54	62	88
77	52	51	52	61	78	63	54
69	88	82	90	72	56	80	73
90	61	87	74	86	60	64	87

(a) Find the mode and the range;
(b) make a frequency distribution table, starting with $50-54 \ldots$;
(c) calculate the mean;
(d) calculate the standard deviation.
(a) Calculate the lengths, angles and the area of the triangle $A B C$, where $A C=21 \mathrm{~cm}$ and angle $\mathrm{ABC}=78^{\circ}$.
 Answer at least TWO questions from this section.
(a) Define the following:

(i) acid;
(ii) base;
(iii) acid salt.
(6 marks)
(b) By use of appropriate equations, explain three methods of salt formation.
(6 marks)
(c) State two properties of:
(i) acids;
(ii) bases.
(d) Describe the term self-ionization of water.
6. (a) Explain the meaning of the following terminologies:
(i) stress:
(ii) strain;
(iii) modulus of elasticity.
(b) State hooke'slaw of elastic materials.
(c) A metal wire is 2.5 mm diameter and 2 m long. A force of 12 N is applied to it and it stretches 0.3 mm . Assuming the material is elastic, determine the following:
(i) the stress in the wire 8 .
(ii) the strain in the wire ε.
(d) A steal column is 3 m long and 0.4 m diameter. It carries a load of 50 MN . Given that the modulus of elasticity is 200 GPa , calculate:
(i) the compressure stress;
(ii) the strain and determine how much the column is compressed,
7. (a) List two states of matter.
*(b) State three differences between physical and chemical changes.

* (c) State Newton's laws of motion.
(d) The density of iron $7700 \mathrm{Kg} / \mathrm{m} 3$, calculate:
(i) its relative density;
(ii) the mass of a rod of iron 60 cm long and 10 cm in diameter.
(e) State the law of conservation of energy.

8. (a) Define the following:
(i) distance; - Hofselceemot at is
(ii) displacement;
(iii) velocity.
(b) An aeroplane lands at a velocity of $50 \mathrm{~ms}^{-1}$ and decelerates at $20 \mathrm{~ms}^{-2}$ to a velocity of $20 \mathrm{~ms}^{-1}$. Calculate the distance travelled on the runway.
(c) Show that displacement for a particle moving in a straight line is given by the equation $\mathrm{s}=\mathrm{ut}+\frac{1}{2} a \mathrm{at}^{2}$ where $\mathrm{s}=$ displacement, $\mathrm{t}=$ time, $\mathrm{u}=$ initial velocity and $\mathrm{s}=$ acceleration.
(d) (i) Calculate the work done when a force of 5 kN moves its point of application 600 mm in the direction of the force.
(ii) A constant force of 2 kN pulls along a level floor for a distance of 10 m in 50 s , determine the power used.
(4 marks)

THIS IS THE LAST PRINTED PAGE.

