easytvet.com

11 7 AUS 2377

1704/102 MATHEMATICS I AND PHYSICAL SCIENCE June/July 2017 Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

CRAFT CERTIFICATE IN BUILDING TECHNOLOGY MODULE I

MATHEMATICS I AND PHYSICAL SCIENCE

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination: Answer booklet; Mathematical table/scientific calculator; Drawing instruments. This paper consists of EIGHT questions in TWO sections; A and B. Answer TWO questions from section A, TWO questions from section B and ONE other question from either section. All questions carry equal marks. Maximum marks for each part of a question are indicated.

Candidates should answer the questions in English.

This paper consists of 5 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

© 2017 The Kenya National Examinations Council

Turn over

SECTION A: MATHEMATICS I

easytvet.con

(4 marks)

(4 marks)

(4 marks)

(4 marks)

(6 marks)

2 (-)+ 5(-3) = -11

254-54 = -11

154=1

2.5%

10) 256 + 14

Answer at least TWO questions from this section.

- 1. (a) Evaluate without using mathematical tables.
 - (i) $\log_3 24^3$.
 - (ii) log₁₀125 + log₁₀8.
 - (b) Solve $4^{2x-3} = 8^{x+3}$.
 - (c) Make y the subject of the formula, then find the value of y in $m = 5y n^2$ when m = 1, n = -3. (4 marks)
 - (d) Solve the following simultaneous equations:

 $2x + 5y = -11 = 1 \left(\frac{232 + 5y = -10}{2(22 + 5y = -1)} - \frac{2x + 5y = -10}{-22x + 5y = -10} - \frac{2x + 5y = -10}{-22x + 5y = -2} - \frac{2x + 5y = -10}{-22x + 5y = -2} - \frac{2x + 5y = -10}{-22x + 5y = -2} - \frac{2x + 5y = -10}{-22x + 5y = -2} - \frac{2x + 5y = -10}{-22x + 5y = -2} - \frac{2x + 5y = -10}{-22x + 5y = -10} - \frac{2x + 5y = -10}{-22x + 5y = -2} - \frac{2x + 5y = -10}{-2x + 5y = -2} - \frac{2x + 5y = -10}{-2x + 5y = -2} - \frac{2x + 5y = -10}{-2x + 5y = -2} - \frac{2x + 5y = -10}{-2x + 5y = -2} - \frac{2x + 5y = -10}{-2x + 5y = -2} - \frac{2x + 5y = -10}{-2x + 5y = -2} - \frac{2x + 5y$

LICET

(a)

600

- The base of a regular pyramid is 6 cm by 8 cm and its height is 14 cm. Find the total surface are and volume of the pyramid. (14 marks) 2
- (b) Calculate the area of the shaded segment in the figure 1 below:

15cm

2

Figure 1

1704/102 June/July 2017

3. The following are the marks scored by 40 students in an examination:

55	82	92	75	67	66	71	81
63	90	89	72	68	54	62	88
77	52	51	52	61	78	63	54
69	88	82	90	72	56	80	73
90	61	87	74	86	60	64	87

45-6

+32=4

2-7

7.64

2.65

(a)

(b)

(c)

(d)

(a)

- Find the mode and the range;
- make a frequency distribution table, starting with 50-54 ...;

.9

- calculate the mean;
- calculate the standard deviation.
- Calculate the lengths, angles and the area of the triangle ABC, where AC=21 cm and angle ABC = 78°. 0 - 7 + (10 marks)
- Solve $7\cos x 5\sin x = 6$ for $0 \le x \le 360^\circ$. (b)

X8X14 147

3444

5.

SECTION B: PHYSICAL SCIENCE Answer at least TWO questions from this section.

- Define the following: (a)
 - (1)
 - base; ne wheel recentry (bh)4 + 12(br (ii)
 - acid salt. (iii)

State two properties of:

acids;

bases.

Describe the term self-ionization of water.

By use of appropriate equations, explain three methods of salt formation.

13(64)2+12(64)2+2×2

(6 marks)

(6 marks)

15 (LXW) XH

(20 marks)

(10 marks)

750

115-171

easytvet.con

- (4 marks)
- (4 marks)

1704/102 June/July 2017

(b)

(c)

(d)

(i)

(iii)

backrench. 3

Turn over

easytvet.com

6,	(a)	Explain the meaning of the following terminologies:						
		(i)	stress:					
		(ii)	strain;					
		(iii)	modulus of elasticity.	(6 marks)				
	(b)	State	hooke'slaw of elastic materials.	(2 marks)				
	(c)	A metal wire is 2.5 mm diameter and 2 m long. A force of 12 N is applied to it and it stretches 0.3 mm. Assuming the material is elastic, determine the following:						
		(i)	the stress in the wire δ .	(4 marks)				
		(ii)	the strain in the wire E.	(2 marks)				
	(đ)	A ste Giver	al column is 3 m long and 0.4 m diameter. It carries a load of 50 MN, in that the modulus of elasticity is 200 GPa, calculate:					
		60	the compressure stress.	- I MARTIN TALLA				
		(ii)	the strain and determine how much the column is compressed.	(6 marks)				
7.	(a)	List two states of matter. (1 mar						
)/ (b)	State	three differences between physical and chemical changes.	(3 marks)				
		State	Newton's laws of motion.	(6 marks)				
	(d)	The density of iron 7700 Kg/m3, calculate:						
		6)	its relative density.					
		(ii)	the mass of a rod of iron 60 cm long and 10 cm in diameter.	(7 marks)				
	(e)	State	the law of conservation of energy.	(3 marks)				
8.	(a)	Define the following:						
		(i)	distance;					
		(ii)	displacement;					
		(iii)	velocity.	(3 marks)				
	(b)	An ae veloc	proplane lands at a velocity of 50 ms^{-1} and decelerates at 20 ms^{-2} to a ity of 20 ms^{-1} . Calculate the distance travelled on the runway.	(5 marks)				
	(c)	Show equat a = ac	that displacement for a particle moving in a straight line is given by the ion $s = ut + \frac{1}{2} at^2$ where $s = displacement$, $t = time$, $u = initial velocity coeleration.$	e and (5 marks)				

-p

4

10

easytvet.com

 Calculate the work done when a force of 5 kN moves its point of application 600 mm in the direction of the force.

(3 marks)

156-3%

20 1/2×16×16 50 70 0 2×2 120-28 360 70 22×16×16 360

> 156.38-120-78 = 26:10002

> > 17 AUG 2017

2 Y A 192 M 199 Y

(ii)

20 20 20 + 2 (Carran 14W) 20 20 - 2 (Carran 14W) 2 (Carran 19) + (Cra 1 (Carran 14 + Cra 1 (Carran 14 + Cra

1,34,4-146

Vilume (1005)×H = 13 (6x8)×H = 16(46)×H = 16(46)×H = 7246+3

81A = 1,392 m

(d)

A constant force of 2 kN pulls along a level floor for a distance of 10 m in 50 s, determine the power used. (4 marks)

THIS IS THE LAST PRINTED PAGE.

1704/102 June/July 2017

1.00

-