1704/202
MATHEMATICS II
June/July 2017
Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

CRAFT CERTIFICATE IN BUILDING TECHNOLOGY MODULE II

MATHEMATICS II

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:
Answer booklet;
Scientific calculator:
Answer FIVE of the following EIGHT questions.
All questions carry equal marks.
Maximum marks for each part of a question are indicated.
Candidates should answer the questions in English.

This paper consists of 5 printed pages.
Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

1. (a) A bag contains 6 green, 4 red and 5 blue balls. Three balls are picked, one at a time with replacement. Use tree diagram to determine the probability of picking:
(i) one green, one red and one blue ball;
(ii) all green balls;
(iii) two red and one green in that order;
(iv) one blue and two red in that order.

(10 marks)
(b) The probability that it will rain today is 0.26 . Determine the probability that it will not rain today.
(c) . Two dice are tossed together. What is the probability that the sum of the numbers showing on their upper faces is:
(i) 3 ;
(ii) 7 :
(iii) odd;
(iv) even.
(8 marks)
2. Below are marks scored by 50 students in exam.

3. (a) Figure 1 shows a triangle $A B C$. Calculate:
(i) the length of $A C$:
(ii) the angles ABC and ACB ;
(iii) the area.

$$
\begin{aligned}
& x+3=4 \\
& x-3=x \\
& 2-5=y
\end{aligned}
$$

Fig. 1
(b) Solve $3 \sin x-5 \cos x=4$ for values of $x, 0 \leq x \leq 360^{\circ}$
(10 marks)
4. (a) Solve for x and y.

$$
\binom{x+3}{y-5}=\binom{4}{2} \quad\left(\frac{1}{19}+2 \frac{4}{19}=3 \cdot 2\right.
$$

(b) Use matrix method to solve the pairs of simultaneous equations

$$
\begin{align*}
& 3 x-7 y=5 \\
& x+4 y=6 \tag{12}
\end{align*}
$$

8
(8 marks)
(c) Define a singular matrix.
(2 marks)
(d) For the matrix shown below

$$
\left(\begin{array}{cc}
2 & -5 \\
6 & 4
\end{array}\right)
$$

determine:
(i) the determinant;

1
(ii) the transpose;
(iii) the inverse.

$$
\frac{7}{14} \times 5+\frac{7}{19} \times 6 t
$$

5. (a) Differentiate the following:
(i) $y=2 x^{2}-5 x$;
(ii) $y=(x-2)\left(5 x^{2}+1\right)$;
(iii) $y=x \sin x$;
(iv) $y=\frac{3 x^{2}}{\cos 2 x}$.
(b) An object is thrown upwards so that its height above the ground after t seconds is $\{2 t(5-t)+9\}$ metres. Find the:
(i) velocity;
(ii) acceleration;
(iii) maximum height reached.
6. (a) Integrate the following:
(i) $\int 2 x d x$
(ii) $\int \frac{x^{2}+5 x+6}{x+3} d x$
(b) Evaluate $\int_{0}^{2}\left(4-2 x^{2}\right) d x$
(c) Calculate the area between the curve $y=x^{2}-3 x+2, x$-axis, line $x=1$ and $x=3$.

$$
\begin{aligned}
& \frac{\text { PRT }}{100} \\
& \frac{400000 \times 15 \times 4}{100}
\end{aligned}
$$

7. (a) If $a=\binom{2}{-4}$ and $b=\binom{5}{7}$, find $\frac{1}{2} a+3 b$
(b) Determine the length of the vector $\left(\begin{array}{l}3 \\ 2 \\ 4\end{array}\right)$
(c) Figure 2 shows triangle $\mathrm{OAB} \cdot \mathrm{OA}=a, \mathrm{OB}=b$ and P lies on AB such that $\mathrm{AP}: \mathrm{PB}=3,2$. Express the vector QP in terms of a and b .

17 NU 2π

Fig. 2
(d) Given $\mathrm{P}=\binom{3}{5}$. Find its magnitude and direction.
(5 marks)
(e) Resolve the vector $\mathrm{R}=\left(7,150^{\circ}\right)$ into the horizontal and vertical components.
(5 marks)
8. (a) A tourist from America had 2,000 US dollars to use in Kenya. He exchanges the dollars into Kenya Shillings. He spent a total of Ksh. 72,000 , then converted the balance back to US dollars. Calculate how much US dollars he remained with, given that 1 US dollar is equivalent to Kish. 88.
(6 marks)
(b) John bought land at Kish. 800,000 . He then subdivided the land in three portions and 10 sold them at Ksh. 300,000 , Ksh. 500,000 and Ksh. 200,000 respectively. Calculate his percentage profit.
(c) Mary took a bank loan of Ksh. 400,000 to be paid back after 4 years at a compound interest of 15% per annum. Determine the total amount she paid back.
(d) Paul is a businessman who buys cars in Japan and sells them in Germany. During one month he bought and transported 25 Nissan cars at a cost of 300,000 Japanese Yen each. At what price must he sell each car in Germany if he wishes to make a profit of 25% ? 25.523 German Deutschmark $=208.166$ Japanese Yen.

$$
A=A
$$

THIS IS THE LAST PRINTED PAGE.

