11.1.0 ELECTRONICS

11.1.01 Introduction

This module unit is designed to equip the trainee with the necessary knowledge, skills and attitude required to understand the concepts of electronic circuits and their application in related engineering fields.

11.1.02 General Objectives

By the end of this module, the trainee should be able to:

- a) understand the theory of semiconductors
- b) discuss the components used in electronic circuits
- c) acquire knowledge in the operation of electronic circuits
- d) develop correct attitude towards career progression in the trade area
- e) appreciate changes in electronic technology
- f) apply the acquired knowledge in solving electronic and related problems

11.1.03 Module Summary and Time Allocation

Electronics

Code	Sub Module	Content	Hrs
	Unit		
11.1.1	Semiconductor Theory	 Atomic theory Classification of materials Intrinsic semiconductors Extrinsic semiconductors 	4
		The p-n junction diode	
11.1.2	Electronic Components	 Construction of components Operation of components Characteristics of components Application of components 	12
11.1.3	Amplifiers	Transitor configurationTransistor characteristicsBiasing methods	12

	T	1	
		 Coupling methods 	
		• Distortion and noise in amplifiers	
		 Operational amplifiers 	
11.1.4	Power Supplies	Rectification	12
11.1.4	1 ower Supplies		12
		• Smoothing	
		Regulation Valtage multiplians	
		 Voltage multipliers Methods of protection 	
11.1.5	Feedback	Methods of protection	12
11.1.3	reeuback	Feedback principle	12
		Positive and negative feedback	
		 Types of negative 	
		feedback	
		Requirements for	
		oscillation	
		Sinusoidal oscillator	
		circuits	
11.1.6	Number System	• Translation of radix	16
	And Codes	Binary arithmetic	
		 Coding systems 	
		• Code conversion	
		•	
		 Application of coding 	
		systems	
11.1.7	Boolean Algebra	 Boolean identities 	10
		• De Morgan's rules	
		Simplification of	
		Boolean equations using	
		identities and Karnaugh	
		map	
		• (upto 4-variables)	_
11.1.8	Logic Gates	• Symbols	8
		Truth table	
		Logic families	
		Application of logic	
44		gates	<u> </u>
11.1.9	Flip Flops	 Definition of flip-flop 	5
		• Description of various flip-flops	
L	I	ГГ	1

11.1.10	Transducers	Definition	5
		Construction	
		Operation	
		Application	
11.1.11	Filters	Operation of filters	3
		Response curves	
		Application	
Total Time			

11.1.1 SEMICONDUCTOR THEORY

Theory

- 11.1.1TO Specific Objectives

 By the end of the submodule unit, the trainee should be able to:
 - a) explain atomic theory
 - b) classify materials using the energy band diagram
 - c) describe extrinsic semiconductors
 - d) describe the p-n junction

Competence

The trainee should have the ability to: Connect a diode in a circuit

Contents

- 11.1.1T 1 Atomic theory
 - i) Element
 - ii) Compound
 - iii) Periodic table
 - iv)Protons
 - v) Neutrons
 - vi)Electrons
 - vii) Orbit
- 11.1.1T 2 Classification of materials
 - i) Conductor
 - i) Semiconductors
 - ii) Insulators
- 11.1.1T 3 Intrinsic semiconductors
 - i) Silicon
 - ii) Germanium

- iii) Covalent bonds
- iv) Electron hole pair generation/recombin ation
- v) Intrinsic conduction
- 11.1.1T4 Extrinsic semiconductors
 - i) Doping
 - ii) N- type semiconductor
 - iii) P- type semiconductor
 - iv) Extrinsic conduction
- 11.1.1T 5 The P-N junctions
 - i) Formation of the junction
 - ii) Depletion layer
 - iii) Forward bias

Practice

- 11.1.1P0 Specific Objectives

 By the end of the sub

 module unit the trainee
 should be able to:
 - a) identify the terminals of a p-n junction diode
 - b) connect the P-N junction diode circuit
 - c) determine the characteristics of the P-N junction diode

Content

- 11.1.1P1 Identification of the terminals of a P-N junction diode
 - i) Anode
 - ii) Cathode

- 11.1.1T2 Connection of a diode in a circuit
 - i) Polarity
 - ii) Voltage levels
 - iii) establish transistor configuration
- 11.1.1T3 Characteristics of p-n junction diode
 - i) Forward
 - ii) Reverse

Suggested Learning Resources

- i) Junction diodes
- ii) Measuring instruments
- iii) Connecting leads
- iv) Power supply units
- v) Accessories
- vi) Electronic tool kit
- vii) Bread boards

11.1.2 ELECTRONIC COMPONENTS

Theory

- 11.1.2TO Specific Objectives
 By the end of the submodule unit, the trainee should be able to:
 - a) describe the construction of various components
 - b) describe the operation of various electronic components
 - c) explain characteristics of various electronic components

d) state the application of various electronic component

Competence

The trainee should have the ability to:

- i) identify electronic components
- ii) test electronic components
- iii) determine component value and rating

Content

- 11.1.2T1 Description of the construction of electronics components
 - i) Resistors
 - ii) Capacitors
 - iii) Inductors
 - iv) Diodes
 - v) Bi polar Junction Transistor (BJT)
 - vi) Field effect transistors (FETS)
 - vii) Triacs
 - viii) Thyristors (SCR)
 - ix) Photo conductive cells
 - x) Photo diodes
 - xi) Photo transistors
 - xii) Light emitting diodes (LED)
 - xiii) Liquid crystal display (LCD)
 - xiv) Integrated circuits (ICS)
- 11.1.2T2 Operation of electronic components

- 11.1.2T3 Characteristics of electronic components
- 11.1.2T4 Applications of electronic components

Practice

- 11.1.2P0 Specific Objectives
 By the end of the submodule unit, the trainee should be able to:
 - a) identify various electronic components
 - b) determine values and ratings of electronic components
 - c) test various electronic components

Content

- 11.1.2P1 Identification of various electronic components
- 11.1.2P2 Values and rating
 - i) Component size
 - ii) Colour code
 - iii) Component Data
- 11.1.2P3 Testing of electronic component
 - i) Short circuit
 - ii) Open circuit
 - iii) Change in value
 - iv) leakage

Suggested Learning Resources

- i) various components
- ii) breadboard
- iii) measuring instruments

- iv) various electronic tools
- v) connecting leads
- vi) data books and catalogues

11.1.3 AMPLIFIERS

Theory

- 11.1.3T0 Specific Objectives

 By the end of the submodule unit, the trainee should be able to:
 - a) state the types of transistor configurations
 - b) explain the various characteristics of transistors
 - c) describe biasing methods of transistor
 - d) describe various coupling methods
 - e) explain different classes of amplifier operations
 - f) explain distortion and noise in amplifiers
 - g) describe the operation of operational amplifiers

Competence

The trainee should have the ability to:

i) Construct and test various amplifiers

Content

- 11.1.3T1 Transistor configuration
 - i) common base
 - ii) common emitter
 - iii) common collector
- 11.1.3T2 Characteristics of transistors
 - i) Input characteristics
 - ii) Output characteristics
 - iii) transfer characteristics
- 11.1.3T3 Biasing methods
 - i) Fixed bias
 - ii) Collector base bias
 - iii) Potential divider bias
 - iv) Emitter bias
- 11.1.3T4 Coupling methods
 - i) R.C coupling
 - ii) Transformer coupling
 - iii) direct coupling
 - iv) matching
- 11.1.3T5 Distortion and noise in amplifiers
 - i) Harmonic distortion
 - ii) Frequency distortion
 - iii) Inter modulation distortion
 - iv) Amplitude distortion
 - v) Transistor noise
- 11.1.3T6 Classes of amplifiers
 - i) Class A
 - ii) Class B
 - iii) Class C

iv) 11.1.3T7

Operational amplifiers

- v) definitions and terminology
- vi) Characteristics of op-amps
- vii) Applications of opamps

Practice

11.1.3P0 Specific Objectives

By the end of the submodule unit, the trainee should be able to:

- a) connect and operate various amplifier circuits
- b) perform various measurements and tests on an amplifier
- c) construct various amplifiers

Content

11.1.3P1 Connection and operation of amplifiers

- i) Different biasing
- methods
 ii) Different coupling methods
- iii) Different classes of operation
- 11.1.3P2 Measurements and tests
 - i) Input signal levels
 - ii) Output signal levels
 - iii) Distortion
 - iv) Bias voltage
 - v) Bias current
 - vi) Waveforms

vii) Power 11.1.3P3 Construction of amplifiers

Suggested Learning Resources

- i) Transistors
- ii) Op-amps
- iii) Measuring instruments
- iv) Catalogue and data books
- v) Power supply units
- vi) Connecting leads
- vii) Electronic tool kit
- viii) Training kits
- ix) Bread boards

11.1.4 POWER SUPPLIES

Theory

11.1.4T0 Specific Objectives By the end of the submodule unit, the trainee should be able to:

- a) describe the rectification processes
- b) describe different methods of smoothing
- c) explain the principles of power regulation and stabilization
- d) explain the operation of voltage multipliers and dividers

e) explain the methods of power supply protection.

Competence

The trainee should have The trainee should have the ability to:

- i) Construct basic power supply circuits
- ii) Test and measure power supply parameters

Content

11.1.4T1 Methods of power rectification

- i) Half wave
- ii) Full wave
- iii) Methods of smoothing
- iv) Full wave bridge

11.1.4T2 Smoothing

- i) Reservoir capacitor
- ii) R C filter
- iii) Pie filter

11.1.4T3 Regulation

- i) Zener diode regulator
- ii) Transistor regulator
- iii) IC regulator

11.1.4T4 Voltage multipliers

- i) Double
- ii) Triplex
- iii) quadruple

11.1.4T5 Methods of power supply protection

- i) Fuses
- ii) Current limiting

Practice

11.1.4P0 Specific Objectives

By the end of the submodule unit, the trainee should be able to:

- a) construct half and full wave rectifier circuits
- b) construct filter network circuits
- c) build simple regulator circuit
- d) test and measure various supply parameters

Content

- 11.1.4P1 Construction of rectifier circuit
 - i) Half wave
 - ii) Full wave
 - iii) Full wave bridge
- 11.1.4P2 Construction of smoothing circuits
 - i) Reservoir capacitor
 - ii) R C filter
 - iii) Pie filter
- 11.1.4P3 Construction of power supply regulators
 - i) Zener diode regulator
 - ii) Transistor regulator
 - iii) IC regulator
 - i) Construction of voltage multipliers
 - ii) Double
 - iii) Triplex
 - iv) Quadrupler
- 11.1.4P4 Tests and measurements
 - i) D.C .out put on no load

- ii) D.C. output on load
- iii) Load current
- iv) Ripple

Suggested Learning Resources

- i) Transformers
- ii) Rectifiers
- iii) Filters
- iv) Regulators
- v) Instruments
- vi) Charts

11.1.5 FEEBACK

Theory

11.1.5T0 Specific Objectives

By the end of the submodule unit, the trainee should be able to:

- a) explain the feedback principle
- b) differentiate between positive and negative feedback
- c) state types of feedback connection
- d) explain the effects of feedback connections
- e) state the requirements for oscillation
- f) explain the operation of various oscillator circuits

Competence

The trainee should have the ability to:

- i) connect and test various feedback circuits
- ii) Connect and test various sinusoidal oscillator circuits

Content

- 11.1.5T1 Explanation of feedback principle
- 11.1.5T2 Positive and negative feedback
 - i) Gain with positive feedback
 - ii) Gain with negative feedback
- 11.1.5T 3 Effects of negative feedback on
 - i) Gain
 - ii) Stability
 - iii) Noise and distortion
 - iv) Bandwidth and response
 - v) Input and output resistance
- 11.1.5T 4 Types of feedback connections
 - i) Voltage shunt
 - ii) Voltage series
 - iii) Current shunt
 - iv) Current series
- 11.1.5T 5 Explanation of requirements for oscillation
 - i) Feedback requirement
 - ii) Impedance requirement
- 11.1.5T 6 Explanation of operation of various

sinusoidal oscillation circuits

- i) LC oscillators
- ii) Colpit's
- iii) Hartley
- iv) Crystal
- v) Clapps

Practice

- 11.1.5P0 Specific Objectives

 By the end of the submodule unit, the trainees should be able to:
 - a) connect and test simple negative and positive feedback circuits
 - b) connect and test various sinusoidal oscillator circuits

Content

- 11.1.5P1 Connection of positive and negative feedback circuit
 - i) Gain
 - ii) Noise
 - iii) Response
 - iv) Impendence
- 11.1.5P2 Connection and Testing various sinusoidal oscillator circuits
 - i) Frequency
 - ii) stability

Suggested Learning Resources

i) Manufacturers catalogue and data book

- ii) Breadboard
- iii) Connecting leads
- iv) CRO
- v) Components

11.1.6 NUMBER SYSTEMS AND CODES

- 11.1.6TO Specific Objectives

 By the end of the submodule unit, the trainee should be able to:
 - a) translate numbers from one radix(base) to another
 - b) perform binary arithmetic
 - c) describe various coding systems
 - d) perform conversion of various coding systems
 - e) state the applications of various coding systems

Contents

- 11.1.6T1 Translation of one radix to another
 - i) Binary to decimal and vice versa
 - ii) Binary to octal
 - iii) Octal to decimal
 - iv) Binary to hexadecimal
 - v) Hexadecimal to decimal
- 11.1.6T2 Binary arithmetic Addition
 - i) Subtraction

- ii) Multiplication
- iii) Division as a form of subtraction
- 11.1.6T3 Coding systems
 - i) BCD (8421)
 - ii) Gray code
 - iii) ASCII
 - iv) Excess 3
- 11.1.6T4 Code systems conversion
 - i) Binary to BCD
 - ii) Binary to gray code and vice versa
- 11.1.6T5 Applications of various coding systems

Suggested Learning Resources

Number systems charts

11.1.7 BOOLEAN ALGEBRA

Theory

- 11.1.7TO Specific Objectives

 By the end of the submodule unit, the trainee should be able to:
 - a) state Boolean identities
 - b) state De Morgan's laws
 - c) simplify Boolean equations

Contents

- 11.1.7T1 Boolean identities
- 11.1.7T2 De Morgan's laws
- 11.1.7T3 Simplification using De Morgan's laws, Boolean

identities and Karnaugh map

Suggested Learning Resources

- Boolean identities charts

11.1.8 LOGIC GATES

- 11.1.8TO Specific Objectives
 By the end of the submodule unit, the trainee should be able to:
 - a) sketch the symbols of various logic gates
 - b) indicate on a truth table the out put of various logic gates to given input
 - c) state
 - d) describe various logic families and their characteristics
 - e) state the applications of logic gates

Competence

The trainee should have the ability to:

- i) Identify various logic gates
- ii) Connect and test various logic gates

Contents

11.1.8T1 logic gates

- i) American symbols
- ii) British symbols
- iii) AND
- iv) OR

- v) NOT
- vi) NAND
- vii)NOR
- viii) EX OR
- ix) EX- NOR
- 11.1.8T2 Truth table Content for various gates
- 11.1.8T3 Logic families and their characteristics
 - i) TTL (Transistor transistor logic)
 - ii) DTL (Diode Transistor Logic)
 - iii) RTL (Resistor Transistor Logic)
 - iv) ECL (Emitter Coupled Logic)
- 11.1.8T4 Applications of logic gates

Practice

- 11.1.8P0 Specific Objectives

 By the end of the submodule unit, the trainee should be able to:
 - a) identify various logic gates
 - b) connect and test various logic gates

Contents

- 11.1.8P2 Identification of logic gates
- 11.1.8P1 Connection and testing of logic gates
 - i) Pin out identification
 - ii) Logic levels static tests
 - iii) Dynamic tests

Suggested Learning Resources

- i) Digital logic trainer kit
- ii) Logic gates
- iii) Jumper wires
- iv) DC power supply source
- v) CRO

11.1.9 FLIP FLOPS

11.1.9TO Specific Objectives By the end of the sub module unit, the trainee should be able to:

- a) define flip flops
- b) describe the operation of various flip flops

Competence

The trainee should have the ability to:

- i) apply flip flops in electronic circuit
- ii) test flip flop circuits

Contents

- 11.1.9T1 Definition of flip flops 11.1.9T2 Description of various
 - types of flip flops
 - i) SR
 - ii) JK
 - iii) T
 - iv) D

Practice

11.1.9P0 Specific Objectives

By the end of the submodule unit, the trainee should be able to:

- a) identify various flip flops
- b) carry out tests on flip flops circuits

Contents

- 11.1.9P1 identification of flip flops
- 11.1.9P2 tests on flip flop circuits

Suggested Learning Resources

- i) Digital logic trainer
- ii) Logic gates
- iii) Jumper wire
- iv) Bread board
- v) DC power supply
- vi) IC clips
- vii) Flip flop integrated circuits

11.1.10 TRANSDUCERS

Theory

11.1.10T0Specific Objectives

By the end of the submodule unit, the trainee should be able to:

- a) define the term transducers
- b) describe the construction of various types of transducers
- c) describe the operation of various types of transducers

d) state the applications of transducers

Competence

The trainee should have the ability to:

- i) Identify various types of transducers
- ii) Construct an test simple transducer circuits

Content

11.1.10T1Definition of transducer 11.1.10T2Construction of various types of transducers

- i) Thermal
- ii) Inductive
- iii) Capacitive
- iv) Photo electric
- v) Acoustic

11.1.10T3Operation of the transducers

- i) Thermal
- ii) Inductive
- iii) Capacitive
- iv) Photo electric
- v) Acoustic

11.1.10T4Application of the transducers

- i) Displacement
- ii) Pressure
- iii) Flow rate
- iv) Sound
- v) Alarm systems
- vi) Humidity
- vii) Temperature

Practice

11.1.10P0Specific Objectives

By the end of the submodule unit, the trainee should be able to:

- a) identify various types of transducers
- b) connect simple transducer circuits

Content

11.1.10P1 Transducer circuits

- i) Thermal
- ii) Inductive
- iii) Capacitive
- iv) Photo electric
- v) Acoustic

11.1.10P2connection of

transducer circuits

Suggested Assessment Methods

- i) Assignment
- ii) Oral tests
- iii) Written tests
- iv) Practical tests

11.1.11 FILTERS

Theory

11.1.11T0Specific Objectives

By the end of the submodule unit, the trainee should be able to:

- a) describe the operation of the filter networks
- b) sketch response curves of various filter net works
- c) state the application of filters

Competence

The trainee should have the ability to:

- Construct and test basic filter circuits

Content

- 11.1.11T 1 Operation of different types of filter networks
 - i) R-C filters
 - ii) L-C filters
 - iii) Active filters
- 11.1.11T 2 Response curves
 - i) Low pass
 - ii) High pass
 - iii) Band pass
- 11.1.11T 3 Application of filters

Practice

11.1.11P0Specific Objectives

By the end of the submodule unit, the trainee should be able to:

- a) construct basic filter circuits
- b) test various types of filter circuits

Content

- 11.1.11P 1 construction of filter circuits
 - i) Low pass
 - ii) High pass
 - iii) Band pass
- 11.1.11P 2 Filter circuits tests

Suggested learning resource

- i) Components (discrete, ICs)
- ii) CRO
- iii) Signal generators