18.2.0 MATHEMATICS II

18.2.01

INTRODUCTION

This module unit is intended to equip the trainees with relevant mathematical knowledge, skills and attitudes to enhance their analytical skills and understanding in Electrical and Electronic sciences and other areas of the trade. Trainees undertaking this unit require to have completed Mathematics I of this course.
18.2.02
able to:
18.2.0 MODULE UNIT SUMMARY AND TIME ALLOCATION

MATHEMATICS II

Code	Sub Module Unit	Content	Hrs
18.2 .1	Algebra	- Simultaneous equations Quadratic equations Binomial theorem	10
18.2 .2	Trigonome try and Hyperbolic Functions	Trigonometric ratios - Factor formulae - Solution of triangles - Trigonometric equations	18
18.2 .3	Vector	- Vector algebra and theorems - Dot and cross products - Gradient, divergence and curl of scalar and - vector functions	12
18.2 .4	Matrices II		

		\bullet Determinants \bullet Cofactor \bullet Crammer's rule \bullet Inverse of 3x3 matrix \bullet Solution of simultaneous equations	
18.2 .5	Calculus	- Differentiation and its applications \bullet Integration	12
Total Time		$\mathbf{6 6}$	

18.2.1 ALGEBRA

18.2.1T0 Specific Objectives By the end of this unit, the trainee should be able to:
a) solve linear simultaneous equations
b) reduce equations to quadratic equations
c) solve quadratic equations
d) state and use the binomial theorem
e) apply binomial theorem to estimate errors of small changes

Content

18.2.1T1 Solution of linear simultaneous equations
18.2.1T 2 Reduction of equations to quadratic equations
18.2.1T 3 Solution of equations reduced to quadratic equations
18.2.1T 4 Statement and use of binomial theorem
18.2.1T 5 Application of binomial theorem to estimate errors

18.2.2 TRIGONOMETRY AND HYPERBOLIC FUNCTIONS

18.2.2T0 Specific Objectives By the end of the submodule unit, the trainee should be able to:
a) define trigonometrical ratios, compound angles, double angles and factor formulae
b) solve right angled triangular trigonometrical equations
c) define hyperbolic ratios,
d) state Osborne's rule and solve hyperbolic equations

Content
18.2.2T1 Trigonometric ratios
i) Sketches
ii) Compound formulae
iii) Deviation of factor formulae
18.2.2T2 Solution of right angled triangle parameters
18.2.2T3 Definition of hyperbolic ratios
18.2.2T1 Osborne's rule
i) Statement
ii) Application
18.2.3T VECTOR
18.2.3T0 Specific Objectives By the end of the submodule unit, the trainee should be able to:
a) define a vector and scalar
b) distinguish between a vector and scalar quantity
c) define vector theorems
d) solve problems involving the dot and cross products
e) solve problems on gradient, divergence and curl operators

Content
18.2.3T 1 Definition of a vector and scalar
18.2.3T 2 Distinction between a vector and scalar quantity
18.2.3T 3 Definition of vector theorem
i) Resolution
ii) Proof of ratio theorem
iii) Application of ratio theorem
18.2.3T 4 Solution of problems on dot and cross products
18.2.3T T5 Gradient, divergence and curl operators
i) Definition
ii) Calculations

18.2.4 MATRICES II

18.2.4T0 Specific Objectives By the end of the submodule unit, the trainee should be able to:
a) Perform 3×3 matrix operations
b) Determine the determinant of a 3×3 matrix using co-
factor method and Sirus rule
c) Solve a problem using crammers rule
d) Determine the inverse of a 3×3 matrix
e) Apply matrices in solving linear simultaneous equations with three unknowns

Content

18.2.4T1 Performing 3×3 matrix operations
18.2.4T2 Determination of determinant of a 3×3 matrix using:
i) Co-factor method ii) Sirus rule
18.2.4T3 Solution of problems using Cramer's rule
18.2.4T4 Determination of the inverse of a 3×3 matrix
18.2.4T5 Application of matrices in solving linear simultaneous equations with three unknowns

18.2.5 CALCULUS

18.2.5T0 Specific Objectives By the end of the submodule unit, the trainee should be able to:
a) define the derivative of a function
b) find derivative of a function from the first principles
c) refer to the table of derivatives of common functions
d) state and use rules of differentiation
e) determine higher derivatives
f) define partial derivatives of a function of two variables
g) solve problems involving small changes or errors using partial derivatives
h) determine stationary points of functions of two variables
i) integrate equations

Content
18.2.5T1 Definition of differentiation
18.2.5T2 Determination of derivatives (Xn , trigonometric)
18.2.5T3 Reference to tables of derivatives
18.2.5T4 Rules of differentiation
18.2.5T5 Determination of higher derivatives
18.2.5T6 Definition of partial derivatives
18.2.5T7 Solution of problems involving small changes
18.2.5T8 Determination of stationary points
18.2.5T9 Integration
i) Xn
ii) Trigonometric functions

