1601/102 1602/102 APPLIED SCIENCE, ELECTRICAL PRINCIPLES I AND ELECTRONICS

Oct. /Nov. 2021 Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

CRAFT CERTIFICATE IN ELECTRICAL AND ELECTRONIC TECHNOLOGY (POWER OPTION) (TELECOMMUNICATION OPTION)

MODULE I

APPLIED SCIENCE, ELECTRICAL PRINCIPLES I AND ELECTRONICS

3 hours

INSTRUCTIONS TO CANDIDATES

This paper consists of **EIGHT** questions in **THREE** sections; **A**, **B** and **C**. Answer **ONE** question from section **A**, **TWO** questions from section **B** and **TWO** questions from section **C** in the answer booklet provided.

All questions carry equal marks.

Maximum marks for each part of a question are as indicated.

Candidates should answer the questions in English.

Take: $\epsilon_0 = 8.85 \times 10^{-12} F/m$ $\mu_0 = 4\pi \times 10^{-7} H/m$

This paper consists 7 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

SECTION A: APPLIED SCIENCE

Answer ONE question from this section.

- 1. List two examples of carbon compounds. (a) (i)
 - Identify the products of combustion of carbon compounds in the presence of (ii) excess oxygen.

(4 marks)

- (b) Sketch a labelled ray diagram of light reflected on a plane mirror, indicating the ray angles. (5 marks)
- (c) Define each of the following:
 - (i) latent heat of vaporization;
 - (ii) density.

(4 marks)

CA

- A 5000 cm³ of water at 18° C is turned into vapour by heating. Determine the: (d)
 - mass of water: (i)
 - (ii) amount of heat used.

Take: Specific latent heat of vaporization of water = 2,260 kJ/kg; Specific heat capacity of water = 4200 J/kgK; Density of water = 1 g/cm^3

(7 marks)

- 2. State the law of electric charges. (a) (i)
 - Identify the type of charge acquired by each of the following when (ii) rubbed with fur:
 - glass rod; (I)
 - (II)ebony.

(4 marks)

- (b) Differentiate between absolute pressure and atmospheric pressure. (4 marks)
- Draw a labelled diagram of a block and tackle pulley system whose velocity (c) (i) ratio is 5.
 - State two factors that contribute to loss of efficiency for the pulley system (ii) in c(i).

9.0 Book soo

(5 marks)

1

1601/102

1602/102 Oct. J Nov. 2021

- (d) (i) List three renewable sources of energy. = coa
 - (ii) A force of 250 N is applied to an object causing it to move for 6 m at a uniform velocity of 32 m/s. Determine the:
 - (I) work done;
 - (II) power developed.

(7 marks)

SECTION B: ELECTRICAL PRINCIPLES I

Answer TWO questions from this section.

- 3. (a) (i) State Ohm's law. $1 = \frac{\sqrt{1}}{2}$
 - (ii) Sketch a labelled graph of potential difference (V) against current (I) for an electrical material that obey Ohm's law.

(5 marks)

(b) Figure 1 shows an electric circuit.

Determine the:

- CXP.
- (i) power consumed by 150 Ω resistor.
- 4×150
- (ii) energy dissipated by the 150Ω resistor in 15 minutes;

Charles,

- pxt
- (iii) total resistance of the circuit.

(7 marks)

(c) Describe each of the following types of capacitors citing one area of application:

3

- (i) ceramic capacitor;
- (ii) variable capacitor.

(6 marks)

1601/102 1602/102 Oct./ Nov. 2021

2/102

Turn over

A SA SASSA

List **two** tests done to determine the type of fault in a capacitor. (d)

(2 marks)

- State three merits of alkaline cells. 4. (i) (a)
 - Draw a labelled diagram showing constructional parts of a dry leclanche cell. (ii) (8 marks)
 - Figure 2 shows an electric circuit. Each cell has an e.m.f of 1.5 V and internal (b) resistance of 0.3Ω .

- A coil has inductance of 18 H. A current changing at 13.5 A/s flows through the coil. (c) Determine the:
 - e.m.f induced in the coil; (i)

(i)X

(ii)

maximum energy stored in the coil. (ii)

(6 marks)

- State three power losses in a transformer on load. 5. (a) (i)
 - A transformer has full-load losses of 2.1 kW and output power of 155 kW. (ii) Determine the:
 - input power; (I)
 - transformer efficiency. (II)

(8 marks)

1601/102 1602/102 Oct./ Nov. 2021

- (b) (i) Sketch a hysteresis loop for a magnetic material.
 - (ii) Indicate the following on the loop in (b)(i):
- Attender to the start of the .

- (I) remnant flux;
- (II) coercive force;
- (III) saturation flux density.

(6 marks)

- (c) A 3A electric motor has a rotor winding of length 400 mm. The windings make right-angle to a magnetic field of flux density 1.6 T. Determine the force exerted on the rotor. (2 marks)
- (d) Differentiate between self-inductance and mutual inductance with reference to electromagnetism. (4 marks)

SECTION C: ELECTRONICS

Answer TWO questions from this section.

- 6. (a) (i) Define 'covalent bond'.
 - (ii) Differentiate between electron and hole with reference to intrinsic semiconductor conduction. (6 marks)
 - (b) Figure 3 shows a Bipolar Junction Transistor (BJT) circuit.

Fig. 3

C site

- (i) Identify the terminals of the transistor labelled X, Y and Z.
- (ii) Describe the operation of the circuit.

(6 marks)

1601/102 1602/102

	(c)	(i) Draw and label symbol of operational amplifier.	
		(ii) State two areas of application of operational amplifier.	
			(4 marks)
	(d)	Write the equivalent Boolean identity for each of the following:	
		(i) $\overline{AB} = \overline{AC}$	
		(i) $\overline{AB} = A $ (ii) $\overline{A+B} = A $ (iii) $A+1 = A $	
		(iii) $A + I =$ (iv) $A + \overline{AB} =$	
			(4 marks)
7.	(a)	State three areas of application of logic gates.	(3 marks)
	(b)	State the effect of negative feedback on each of the following:	
		(i) noise and distortion; _ diffortion & noise. (ii) bandwidth; _ width band. (iii) stability a bility.	
		(ii) bandwidth; _ width band	
		(iii) stability abi(ity.	(3 marks)
	(c)	Describe the function of each of the following electronic components in a d.c.	power
		grandy maje	
		(i) electrolytic capacitor; - It (gradiates electrolites)	
		(ii) zener diode; — It diodes	
		(i) electrolytic capacitor; — It (apacitates electrolitie) (ii) zener diode; — It diodes the zener. (iii) power diode. — diodes the power.	(6 marks)
			C
	(d)	Perform each of the following number translations:	
		(i) $5A_{16}$ to decimal; $6A_{5}$	1
		(ii) 10111001 ₂ to hexadecimal. 2/01/100	
			(8 marks)
	0	10000 0001	
		1011041	
	3/3/14	4 3 + 3	
	4	0100 000 9+ 25+2+2+	
	5	01101001	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	8		
	9	1001 100	
1601	// \	10.10 11011 6	
	/ 102 Nov. 2021	18/9	
	3	10111110	
	C		V

- 8. (a) (i) Explain 'flip flop' with respect to digital electronics.
 - (ii) **Figure 4** shows NAND gate SR flip flop circuit while table 1 shows its truth table for the set-Reset operation. Complete the table.

(8 marks)

Fig. 4

Table 1

State	S	R	Q.	$\overline{\mathbb{Q}}$	Description
Set	1	0	0	1	a-in
Set	D	1		1	No change of state
Down	0	1	1	0	70
Reset	1	1		×	5
Invalid	0	0			Invalid condition

(b) With the aid of response curve, describe low pass filter.

- (6 marks)
- (c) Explain the principle of operation of each of the following types of transducers:
 - (i) inductive transducers;
 - (ii) acoustic transducers.

(6 marks)

THIS IS THE LAST PRINTED PAGE.

