1601/203 1602/203 MATHEMATICS II June/July 2023 Time: 3 Hours



## THE KENYA NATIONAL EXAMINATIONS COUNCIL

## CRAFT CERTIFICATE IN ELECTRICAL AND ELECTRONIC TECHNOLOGY (POWER OPTION) (TELECOMMUNICATION OPTION)

## **MODULE II**

**MATHEMATICS II** 

3 hours

## INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:
Answer booklet;
Mathematical tables/Non-programmable scientific calculator.
This paper consists of EIGHT questions.
Answer any FIVE questions in the answer booklet provided.
All questions carry equal marks.
Maximum marks for each part of a question are as indicated.
Candidates should answer the questions in English.

This paper consists of 4 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing



Use the binomial theorem to expand  $\left(1+\frac{1}{5}x\right)^{\frac{1}{3}}$  up to the term in  $x^3$ , hence evaluate  $(1.04)^{\frac{1}{3}}$  correct to 4 decimal places. (a)



Three forces  $F_1$ ,  $F_2$  and  $F_3$  in newtons necessary to keep a certain system in (b) equilibrium satisfy the simultaneous equations.

$$2F_1 + 3F_2 - 4F_3 = -4$$
$$-F_1 + 2F_2 + 5F_3 = 18$$
$$3F_1 - 4F_2 + F_3 = -2$$

 $3F_1 - 4F_2 + F_3 = -2$ Use the elimination method to solve the equations  $2F_1 + 3F_2 - 4F_3 = -2$   $4F_2 + 3F_2 + 3F_3 = -2$   $4F_3 + 3F_2 + 3F_3 = -2$   $4F_3 + 3F_3 + 3F_3$ 

2. (a)

Prove the trigonometric identities.

(i) 
$$\frac{\cos \theta - \cos^3 \theta}{\sin \theta} = \sin \theta \cos \theta$$

$$-F_1 + 2F_2 + SF_3 = 18.$$

(ii) 
$$\frac{\cos 4\theta + \cos 2\theta}{\sin 4\theta + \sin 2\theta} = \cot 3\theta$$

(iii) 
$$\frac{\sin^2\theta(\sec\theta + \csc\theta)}{\cos\theta\tan\theta} = 1 + \tan\theta$$

(b) 
$$2(2^{2x}) - 5(2^x) + 2 = 0$$

(10 marks)

(6 marks)

(c) Prove the identity 
$$1 + \cot^2 \theta = \csc^2 \theta$$
.

(4 marks)



Given the vectors:  $\underline{A} = 3\underline{i} + 2\underline{k}$ ,  $\underline{B} = 4\underline{i} - 2\underline{j} + 3\underline{k}$ ,  $\underline{C} = 3\underline{i} + 5\underline{j} - 4\underline{k}$ . (a)

10

Determine:

(i) 
$$-B$$

(ii) 
$$2A + 3C$$

(iii) 
$$4B-6A$$

(8 marks)

- Given that  $\sin \theta = \frac{1}{\sqrt{5}}$  where  $\theta$  is an acute angle, calculate the values of: (b)
  - (i)  $\cos \theta$
  - $\tan \theta$ . (ii)

(5 marks)

(c) 
$$2^{2x+2}-5(2^{x+1})+6=0$$
.

(7 marks)

- 4. (a) Given that  $z = \cos(2x + y^2)$ , show that  $y^2 \frac{\partial^2 z}{\partial x^2} \frac{\partial^2 z}{\partial y^2} = 0$ . (4 marks)
  - (b) Given that  $x = 3 \sec \theta$  and  $y = 12 \tan \theta$ , determine  $\frac{d^2 y}{dx^2}$  at the point  $\theta = \frac{\pi}{4}$ . (8 marks)
  - (c) Given that  $f(x) = 3x^3 28x^2 + 12x + 4$ , determine:
    - (i) the co-ordinates of the stationary points.
    - (ii) the nature of the points in (i). (8 marks)



- (a) Given that the matrix  $A = \begin{bmatrix} x-4 & -3 \\ x & x+1 \end{bmatrix}$  is a singular matrix, determine the:
  - (i) possible values of x;  $(x-4 \cancel{\times} x+1) (5\cancel{c} \cancel{\times} (3))$
  - (ii) two forms of matrix A. (7 marks)
- (b) Solve by completing the square method  $3x^2 7x 11 = 0$ . (7 marks)
- (c) Given  $y = \frac{1}{x^2}$  find  $\frac{dy}{dx}$ , from first principles. (6 marks)



(a) Three currents  $I_1$ ,  $I_2$  and  $I_3$  in amperes flowing in a direct current circuit satisfy the simultaneous equation.

$$2I_1 + 4I_2 + I_3 = 6$$

$$3I_1 + 5I_2 + 2I_3 = 11$$

$$2I_1 + 5I_2 - I_3 = 1$$
Use substitution method to solve the equations. (12 mm)

- (b) Use implicit differentiation to determine the:
  - (i) value of  $\frac{dy}{dx}$
  - (ii) the equation of the normal to the curve  $x^3+2y^2-6xy+3x+2y=10$  at the point (1,-1). (8 marks)

- 7. (a) The volume of a rectangular box of dimensions a, b and c is given by v = abc. Use partial differentiation to determine the approximate change in volume if a increases from 4 cm to 4.1 cm, b decreases form 3 cm to 2.6 cm while c increases form 6 cm to 6.5 cm. (4 marks)
  - (b) Evaluate the integrals

(i) 
$$\int_0^1 \left( \frac{x^3 - x^2 + x}{x^{-1}} \right) dx$$

(ii) 
$$\int_0^\pi (x + \sin^2 x) dx$$
 (8 marks)

(c) Solve the equation  $2\sin^2\theta = 2 - \cos\theta$  for  $0^{\circ} \le \theta \le 360^{\circ}$ . (8 marks)



(a) Application of Kirchoff's laws to a resistive network yielded the simultaneous equations.

$$I_1 + I_2 - I_3 = 0$$
  
 $-I_1 + 2I_2 + I_3 = 9$   
 $2I_1 - I_2 + 3I_3 = 1$ 

Use Cramer's rule to determine the values of currents  $I_1$ ,  $I_2$ , and  $I_3$ .

(13 marks)

(b) Given the matrices:

$$A = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & 2 \\ 1 & 3 & 1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 2 & 2 & 0 \\ 1 & 3 & 2 \\ 3 & 2 & 0 \end{bmatrix} \text{ determine } (AB)^{T}.$$
 (5 marks)

(c) Solve the equation  $3^{2z+1} = 7^{z+2}$  correct to 4 d.p. (2 marks)

[1x2+ 0x1+3x3] [1x2+0x3+3x2] [1x0] 0x2+3x0]

THIS IS THE LAST PRINTED PAGE.