UNDERSTAND MATHEMATICS FOR COMPUTER SCIENCE

UNIT CODE: ICT/OS/CS/CR/03/6/A

UNIT DESCRIPTION

This unit covers the competencies required to understand mathematics for computer science. It involves understanding Linear Algebra, understanding Boolean Algebra, understanding Set Theory, understanding Calculus and understanding Probability and Statistics.

ELEMENT These describe the key outcomes which make up workplace function .	PERFORMANCE CRITERIA These are assessable statements which specify the required level of performance for each of the elements. (<i>Bold and italicized terms are elaborated in the range.</i>)
 Understand Linear Algebra 	 1.1 Linear Equations are explained 1.2 Linear equations are solved 1.3 Vectors are explained 1.4 <i>Vector operations</i> are illustrated 1.5 Matrices are explained
	1.6 <i>Matrix operations</i> are illustrated1.7 Inverse of a square matrix is illustrated
2. Understand Boolean Algebra	 2.1 Boolean algebra is explained 2.2 Basic Boolean operations are explained 2.3 Secondary operations are explained 2.4 Writing of Boolean Expressions is illustrated 2.5 Methods of simplifying Boolean expressions are illustrated 2.6 Boolean Laws and Theorems are illustrated 2.7 Simplification rules for Boolean expressions are illustrated
3. Understand Set Theory	 3.1 Sets Theory is explained 3.2 <i>Methods of Set representation</i> are illustrated 3.3 Cardinality of a set explained 3.4 <i>Types of sets</i> are illustrated 3.5 Venn Diagrams are illustrated 3.6 <i>Set Operations</i> are illustrated
4. Understand Calculus	4.1 Functions and graphs are explained4.2 Differential calculus is illustrated4.3 Integral calculus is illustrated
5. Understand Probability and Statistics	5.1 Key terminologies in Probability are explained5.3 Probability axioms and simple counting problems are illustrated

5.4 Permutations and combinations are illustrated
5.5 Conditional probability and the multiplication rule
are illustrated
5.6 Key terminologies in Probability are explained
5.7 Data representation techniques are illustrated
5.8. Measures of central tendency are illustrated
5.9 Measures of spread are illustrated
5.10 <i>Measure of Location</i> are illustrated

RANGE

This section provides work conditions to which the performance criteria apply. It allows for different work environments and situations that will affect performance.

Variable		Range
1. Ve	ctor operations may	Addition
inc	lude but not limited	Multiplication
to:		Dot product
2. Ma	atrix operations may	• Sum of two matrices
inc	lude but not limited	• Sum of a matrix and a scalar
to:		Matrix subtraction
		Product of two matrices
		• Product of a matrix and a vector
2. B	asic Boolean	• AND
0	perations may	• OR
ir	nclude but not limited	• NOT
to):	
3. S	econdary operations	• NAND
n	nay include but not	• NOR
li	mited to:	• EX-OR
		• EX-NOR
4. N	lethods of	Using algebraic functions
si	implifying Boolean	• Using Truth tables
e	xpressions may	Using Karnaugh Maps
ir	clude but not limited	
to):	
5. B	Boolean Laws and	• AND law
Т	heorems may include	• OR law
b	ut not limited to:	• Inversion law
		Commutative

Variable	Range
6 Matheda of Sat	 Associative Distributive De-Morgan's Theorems
representation may include but not limited to:	 Statement form Tabular form Set builder notation
7. Types of sets may include but not limited to:	 Finite Set Infinite Set Subset Proper Subset Universal Set Empty or Null Equal Equivalent Set Singleton Set or Unit Set Overlapping Set Disjoint Set
8. Set Operations may include but not limited to:	 Set Union and Set Intersection Set Difference/Relative Complement Set Complement Cartesian Product
9. Measures of central tendency may include but not limited to:	MeanMedianMode
10. Measures of spread may include but not limited to:	VarianceStandard deviation
11. Measures of location may include but not limited to:	PercentileQuartiles

REQUIRED SKILLS AND KNOWLEDGE

This section describes the skills and knowledge required for this unit of competency.

Required skills

The individual needs to demonstrate the following skills:

• Communications (verbal and written);

- Time management;
- Problem solving;
- Planning;
- Decision Making;
- Research;

Required knowledge

- The individual needs to demonstrate knowledge of:
- Linear Algebra
- Boolean algebra
- Set Theory
- Calculus
- Probability and Statistics

EVIDENCE GUIDE

This provides advice on assessment and must be read in conjunction with the performance criteria, required skills and understanding and range.

1.	Critical Aspects of	Assessment requires evidence that the candidate:
	Competency	1.1 Solved Linear equations
		1.2 Performed vector operations
		1.3 Performed matrix operations
		1.4 Performed Boolean algebra operations
		1.5 Performed set operations
		1.6 Explained samples spaces, events and sets
		1.7 Solved problems using Probability axioms
		1.8 Solved permutations and combinations
		1.9 Solved problems using conditional probability
		1.10 Represented data using statistical technique
		1.11 Illustrated measures of central tendency
		1.12 Illustrated measures of spread
		1.13 Illustrated measures of location
2.	Resource	The following resources should be provided:
	Implications	2.1 Access to relevant workplace where assessment
	Implications	can take place
		2.2 Appropriately simulated environment where
		assessment can take place
3.	Methods of	Competency may be assessed through:
	Assessment	3.1 Oral questioning
		3.2 Practical tests
		3.3 Observation

		3.4 Written test
4.	Context of Assessment	Competency may be assessed 4.1 Off the job 4.2 on the job 4.3 During industrial attachment
5.	Guidance information for assessment	Holistic assessment with other units relevant to the industry sector, workplace and job role is recommended.

easy wet.com