2521/105 2602/106 2601/106 2603/106 ELECTRICAL MEASUREMENTS AND ANALOGUE ELECTRONICS I June/July 2021

Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN ELECTRICAL AND ELECTRONIC ENGINEERING (POWER OPTION) (TELECOMMUNICATION OPTION) (INSTRUMENTATION OPTION) MODULE I

ELECTRICAL MEASUREMENTS AND ANALOGUE ELECTRONICS I
3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:

Answer booklet;

Drawing instruments:

Scientific calculator/mathematical tables.

This paper consists of TWO sections A and B.

Answer THREE questions from section A and TWO questions from section B in the answer booklet provided.

All questions carry equal marks.

Maximum marks for each part of a question are as indicated.

Candidates should answer the questions in English.

This paper consists of 6 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

SECTION A: ELECTRICAL MEASUREMENTS

Answer THREE questions from this section.

- (a) (i) State one advantage and one disadvantage of indirect contact as compared to direct-contact thermocouple ammeters.
 - (ii) With the aid of a circuit diagram, describe the operation of the direct-contact thermocouple ammeter. (8 marks)
 - (b) Figure 1 shows a circuit diagram of a permeameter used to test a ferro-magnetic specimen. The testing is done by reversing the current in the magnetising winding resulting in a deflection of 100 divisions on the galvanometer connected to coil X and 10 divisions on the galvanometer connected to coil Y. Each of the galvanometers have a constant of 25 x 10⁻⁶ weber-turn per scale division. Coil X has 100 turns and effective area of 50 x 10⁻⁶ m² while coil Y has 10,000 turns and effective area of 5 x 10⁻⁶ m². Taking permeability of free space, μ0 = 4π × 10⁻⁷ H/m, determine the:
 - (i) flux density in the specimen;
 - (ii) flux density in the air;
 - (iii) magnetising force;
 - (iv) relative permeability of the specimen.

(8 marks)

Fig. 1

- (c) A voltmeter having a range of 0-150 V has a guaranteed accuracy of 1 percent of full-scale reading. For a reading of 75V, determine the percentage limiting error of the instrument. (4 marks)
- (a) (i) Define redundancy with respect to reliability.
 (ii) State:
 - Two effects that leads to degraded reliability due to mechanical vibrations and shock.
 - II. Two ways of minimizing the effects in (I). (5 marks)

- (b) List five features that a designer should consider during design so as to make the availability of an equipment as high as possible. (5 marks)
- (c) Table 1 shows data for various components in an electronic equipment. The equipment is put in operation for a period of 1,000 hours. Determine the:
 - (i) Overall failure rate for each type of component;
 - (ii) equipment failure rate;
 - (iii) Mean time between failure of the equipment;
 - (iv) unreliability of the equipment.

(10 marks)

Table 1

Component	Quantity (n)	Failure rate (λ) percent per 1000 hours	Weighting factor (w)
Resistors	200	0.004	1.5
Transistors	300	0.05	1.0
Thyristors	4	0.5	1.2
Capacitors	20	0.02	3.0
ICs	290	0.02	1.0
Connections	1000	0.001	G 11347 D C

- 3. (a) With the aid of a labelled diagram, explain the measurement of depth of modulation of an amplitude modulated wave using an oscillaoscope with the timebase switched off. Assume sinusoidal signals. (7 marks)
 - (b) (i) State three desirable characteristics of shunts used in extending the range of a meter.
 - (ii) A moving coil instrument has a coil of resistance 4Ω and gives a full-scale deflection with a current of 20 mA. Determine the values of resistors required so that the instrument can read upto:
 - I. 1A;
 - II. 15 V.

(7 marks)

- (c) A sinusoidal source feeds an a.c. circuit with the current lagging the voltage by an angle ϕ . Show that the average power over one cycle in the a.c circuit is equal to the wattmeter reading. (6 marks)
- A. (a) (i) Define each of the following with respect to electrical measurements:
 - I. standard;
 - II. derived unit.

- (ii) Describe each of the following standards of measurement:
 - I. international;
 - II. primary.

(8 marks)

(b) Using LMTI system of dimensions, prove that the equation e = Blv is dimensionally correct, where e = e.m.f induced in a conductor, B = flux density, l = effective length of conductor and V = velocity at which the conductor cuts the magnetic field.

(9 marks)

- (c) Determine the mechanical quantity represented by the dimensional equation. (MLT⁻¹)
 (3 marks)
- (a) State three service actions to take during routine maintenance of an electrical/electronic system. (3 marks)
- (b) State two causes of each of the following faults in a d.c motor:
 - (i) high bearing temperature;
 - (ii) excessive sparking at motor commutator;
 - (iii) rapid wear of brushes.

(6 marks)

- (c) Figure 2 shows a circuit diagram of a regulated d.c power supply. State the effects of each of the following faults:
 - (i) diode D1 open circuit;
 - (ii) capacitor C1 short circuit;
 - (iii) terminal 3 of the IC regulator open to ground;
 - (iv) capacitor C2 open circuit.

(8 marks)

Fig. 2

(d) The repair rate of an electrical equipment is 0.5. Determine the mean time to repair (MTTR) of the equipment. (3 marks)

SECTION B: ANALOGUE ELECTRONICS I

Answer TWO questions from this section.

- 6. (a) (i) Define each of the following with respect to semi conductors:
 - I. hole;
 - II. forbidden gap;
 - III. dour atom.
 - (ii) Explain avalanche breakdown with respect to p-n junctions. (7 marks)
 - (b) With the aid of a labelled diagram, explain the structure of an atom. (7 marks)
 - (c) Table 2 shows the data for a semiconductor diode.
 - (i) Draw the graph of current against voltage.
 - (ii) Determine the forward resistance of the diode.

(6 marks)

Table 2

Voltage (V)	0.1	0.2	0.3	0.4	0.5
Current(mA)	0.25	0.5	1.0	3.0	8.0

- 7. (a) (i) State the function of each of the following parts of a dc power supply unit:
 - I. filter;
 - II. transformer.
 - (ii) With the aid of a circuit diagram, describe the operation of a Zener diode voltage regulator. (8 marks)
 - (b) A d.c power supply unit provides an output of 60 V at no load and 56V at full load. The ripple component of the output voltage is 1.25 V rms.

 Determine the percentage:
 - (i) voltage regulation;
 - (ii) ripple.

(4 marks)

- (c) An electron released from the cathode CRT is accelerated to the anode by an accelerating potential of 2 kV in a time of $0.25 \,\mu$ S. Taking the mass of electron, = 9.1×10^{-31} kg and electronic charge, e = 1.6×10^{-19} C, determine the:
 - (i) Velocity of the electron;
 - (ii) acceleration of the electron;
 - (iii) Loss in potential energy;
 - (iv) gain in kinetic energy.

(8 marks)

- State two disadvantages of field effect transistors as compared to bipolar junction transistors. (2 marks)
 - (b) with the aid of a labelled construction diagram, describe the operation of a p-channel junction field effect transistor. (8 marks)
 - (c) Figure 3 shows a circuit diagram, of a common emitter amplifier. Taking Vbe = 0.7V and $I_C = I_E$, determine the following bias voltages and currents:

(10 marks)

THIS IS THE LAST PRINTED PAGE.