2601/103 2602/103 2603/103 ENGINEERING MATHEMATICS I Oct./Nov. 2021

Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN ELECTRICAL AND ELECTRONIC ENGINEERING (POWER OPTION) (TELECOMMUNICATION OPTION) (INSTRUMENTATION OPTION)

MODULE I

ENGINEERING MATHEMATICS I

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:

Answer booklet;

Drawing instruments;

Mathematical tables/Non-programmable scientific calculator.

This paper consists EIGHT questions.

Answer any FIVE questions in the answer booklet provided.

All questions carry equal marks.

Maximum marks for each part of a question are as indicated.

Candidates should answer the questions in English.

This paper consists of 5 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

- Determine the fifth term of the binomial expansion of $(3x+4y)^{16}$ and evaluate its value at $x = \frac{1}{3}$ and $y = \frac{1}{4}$. (6 marks)
- Obtain the first three terms in the binomial expansion of $(8-x)^{\frac{1}{3}}$. State the range of x (b) for which the expansion is valid. (6 marks)
- The resonant frequency of a series circuit is given by $f = \frac{1}{2\pi} \frac{1}{\sqrt{1.C}}$, where L is (c) inductance, C is capacitance. Use binomial theorem to determine the approximate change in f if L increases by 1% and C decreases by 2%.
- Given that α and β are the roots of the equation $ax^2 + bx + c = 0$ where a, b and c are constants. Express in terms of a, b and c. (32+44)16
 - (i) $\alpha^2 + \beta^2$:
 - (ii) $\frac{1}{\alpha^2} + \frac{1}{\beta^2}.$

- 1331 14641 1510 1051
- (5 marks)

(b) Solve the equation by using formula method:

$$\frac{1}{(x-3)} + \frac{4}{(x-1)} = 2$$

(7 marks)

By applying Kirchoff's law to a d.c network, the following simultaneous equations are (c) obtained:

$$2I_1 - 3I_2 + I_3 = 4$$
 ____(1)

$$3I_1 + 2I_2 - 2I_3 = 2$$
 (1)

$$4I_1 - I_2 + 3I_3 = 16$$

Use substitution method to determine the values of the currents, correct to 2 decimal places. (8 marks)

- 3. Simplify: (a)
 - (i) $\left(\frac{1}{x} \frac{1}{y}\right) \div \frac{\left(y^2 x^2\right)}{x^2 y^2}$
 - (ii) $\log_{\frac{1}{2}} 8 + \log_2\left(\frac{1}{8}\right) + \log_3\left(\frac{1}{9}\right)$.

(7 marks)

- (b) Solve the equations:
 - (i) $5(5^{\log_{10}x}) + 5^{(2-\log_{10}x)} = 30$;
 - (ii) $\log_4 x 2\log_x 4 = 1$.

(13 marks)

- (4) \checkmark (a) \checkmark Given that Sin A = $\frac{24}{25}$ and Cos B = $-\frac{5}{13}$ where A is acute and B is obtuse. Determine:
 - (i) Sin (A-B);
 - (ii) Cos(A+B).

(7 marks)

- (b) Prove the identities:
 - (i) $\frac{1}{(1-\sin\theta)} \frac{1}{(1+\sin\theta)} = 2Tan\theta \sec\theta;$
 - (ii) $\frac{2 \sin 4A + \sin 6A + \sin 2A}{2 \sin 4A \sin 6A \sin 2A} = \cot^2 A.$

(6 marks)

- (c) Express the function:
 - (i) $7\sin\phi + 4\cos\phi$ in the form $R\cos(\phi \alpha)$ where R > 0 and $0 \le \alpha \le 90^{\circ}$.
 - (ii) Hence solve

$$7 \sin \phi + 4 \cos \phi = \sqrt{65} \text{ for } 0 \le \phi \le 360^{\circ}.$$

(7 marks)

5. (a) Given the complex numbers

$$Z_1 = 2 + 3J$$
, $Z_2 = 4 - 3j$ and $Z_3 = 1 + 4j$, express

$$Z = \frac{Z_1 Z_2 Z_3}{Z_1 + Z_2 + Z_3}$$
 in the form $a + jb$.

(6 marks)

- (b) Find all the roots of the equation $Z^3 1 j\sqrt{3} = 0$ in polar form. (6 marks)
- (c) Given that Z = -2 j is a root of the equation $Z^4 + 10Z^3 + 39Z^2 + 70Z + 50 = 0$ determine the other roots. (8 marks)

6. (a) Given that $MCosh3x + NSinh3x \equiv 7e^{3x} + 6e^{-3x}$ determine the values of M and N.

(5 marks)

(b) (i) Prove that

$$Sinh^{-1}(x) = \ln(x + \sqrt{x^2 + 1});$$

(ii) Hence evaluate $Sin h^{-1}(3)$ to three decimal places.

(5 marks)

(c) Show that:

(i)
$$\frac{Sinhx}{(Coshx-1)} = Cothx + Co \sec hx$$

(ii) $\tanh 2x = \frac{2 \tanh x}{1 + \tanh^2 x}$

(10 marks)

7. (a) Find $\frac{dy}{dx}$ of $g = e^x$ from first principles.

(6 marks)

(b) Given the following functions, find $\frac{dy}{dx}$

(i)
$$y = x^2 Cos^3(4x)$$

(ii)
$$y = \ln\left(\frac{2x}{3x^2 + 4}\right)$$

(iii)
$$y = \frac{(x-1)^2}{x+4}$$

(9 marks)

(c) A function $z = f(x,y) = e^{xy}$, show that:

$$\frac{1}{y}\frac{\partial z}{\partial x} + \frac{1}{x}\frac{\partial z}{\partial y} = 2z$$

(5 marks)

8. (a) Evaluate the integrals:

(i)
$$\int_0^{\frac{\pi}{12}} \tan^2(3x) dx$$

(ii)
$$\int \frac{x+15}{(x-2)(x+3)} dx$$

(iii)
$$\int_{1}^{4} \sqrt{5x-4} \, dx$$

(12 marks)

- (b) (i) Sketch the region bounded by $y = x^2$ and $x = y^2$ and hence find the area.
 - (ii) Determine the mean value of the current function $I = 50 \, Sin(\omega t)$ over the interval t = 0 and $t = \pi$ in terms of ω and π . (8 marks)

THIS IS THE LAST PRINTED PAGE.

2601/103 2602/103 2603/103 Oct./Nov. 2021