2521/102 2602/103 2601/103 2603/103

ENGINEERING MATHEMATICS I

Oct/Nov. 2022 Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN ELECTRICAL AND ELECTRONIC ENGINEERING (POWER OPTION) (TELECOMMUNICATION OPTION) (INSTRUMENTATION OPTION)

MODULE I

ENGINEERING MATHEMATICS I

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:

Answer booklet;

Drawing instruments;

Mathematical tables/Non-programmable scientific calculator.

This paper consists EIGHT questions.

Answer any FIVE questions.

All questions carry equal marks.

Maximum marks for each part of a question are as indicated.

Candidates should answer the questions in English.

This paper consists of 4 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

1. (a) Given that
$$y = e^{3x}$$
. Find $\frac{dy}{dx}$ from first principles. (5 marks)

- (b) A curve is parametrically defined by $x = 2\cos 3t$ and $y = 2\sin 3t$. Determine the equation of the normal to the curve at $t = \frac{\pi}{9}$. (7 marks)
- (c) Locate the stationary points of the function $f(x) = \frac{x^3}{3} \frac{x^2}{2} 12x \frac{100}{3}$ and determine their nature. (8 marks)
- 2. (a) Simplify the expressions:

(i)
$$\frac{(1+x)^{\frac{1}{2}} - \frac{1}{2}x(1+x)^{-\frac{1}{2}}}{(1+x)^{\frac{3}{2}}}$$

(ii)
$$\frac{\log 125 - \frac{1}{2} \log 25}{\log 625 + \frac{1}{2} \log 25}$$
 (6 marks)

(b) Solve the equations:

(i)
$$\log_{4x}\left(\frac{1}{2}\right) - \log_{\left(\frac{x}{2}\right)}\left(\frac{1}{2}\right) = \frac{3}{4}$$

(ii)
$$2(3^{2x}) - 7(3^x) + 3 = 0$$
, correct to 2 decimal places. (14 marks)

- 3. (a) By using exponential definitions, prove that:
 - (i) $\cosh(x-y) = \cosh x \cosh y \sinh x \sinh y$
 - (ii) $1 \tanh^2 x = \sec h^2 x$

(iii)
$$2\sinh x \cosh x = \sinh 2x$$
. (8 marks)

- (b) Show that $\sec h^{-1}x = \ln\left(\frac{1+\sqrt{1-x^2}}{x}\right)$. Hence evaluate $\sec h^{-1}(0.2)$ correct to 3 decimal places. (6 marks)
- (c) Solve the hyperbolic equation $6\cosh 2x 5\sinh 2x = 4$ correct to 3 decimal places. (6 marks)
- 4. (a) Given that $z_1 = 2 3j$, $z_2 = 3 + 4j$ and $z_3 = 4 + j$ express Z in the form a + jb if $\frac{1}{z} = \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3}$ correct to 3 decimal places. (7 marks)
 - (b) Use De Moivre's theorem to show that $\cos 4A = 8\cos^4 A 8\cos^2 A + 1$. (6 marks)
 - (c) Given that z = 2 j is a root of the equation $z^4 6z^3 + 15z^2 18z + 10 = 0$, determine the other roots. (7 marks)

2521/102 2602/103 2601/103 2603/103 Oct./Nov. 2022

- 5. (a) Show that the polar form of the Cartesian equation $x^2 + xy + y^2 2x = 0$ is given by $r = \frac{2\cos\theta}{1 + \sin\theta\cos\theta}.$ (4 marks)
 - (b) The roots of the quadratic equation $ax^2 + bx + c = 0$ differ by 1. Prove that $b^2 = a(a+4c)$. (6 marks)
 - (c) Figure 1 shows a d.c network of resistors. By using elimination method, determine the values of the current I_1 , I_2 and I_3 correct to 2 decimal places. (10 marks)

Fig. 1

- 6. (a) Given that $\sin \alpha = \frac{12}{13}$ and α is acute. By using suitable identities, determine in fractional form:
 - (i) $\sin 2\alpha$
 - (ii) $\cos 2\alpha$
 - (iii) $\tan 2\alpha$

(5 marks)

- (b) (i) Given that A, B and C are angles of a triangle, prove that $\tan A + \tan B + \tan C = \tan A \tan B \tan C$
 - (ii) Prove the identity

$$\tan \theta + \cot \theta = 2 \csc 2\theta$$

(10 marks)

(c) Solve the trigonometric equation $2\sin\beta + 4\cos^2\beta = 3$ for $0 \le \beta \le 90^\circ$. (5 marks)

- 7. (a) The lateral surface area of a cone is calculated from the formula $s = \pi r \sqrt{r^2 + h^2}$, where r is the radius of the base and h is the vertical height. If r changes by 6% and h by 2%, use partial differentiation to determine the change in S when r = 6 cm and h = 8 cm correct to 2 decimal places. (6 marks)
 - (b) Evaluate the integral $\int_{2}^{3} \frac{x}{(x-1)^{2}(x+2)} dx$ correct to 3 decimal places. (7 marks)
 - (c) Use integration to determine the area of the region enclosed by the line y = 2x + 4 and the curve $y = 2x^2$. (7 marks)
- 8. (a) Determine the first four terms of the binomial expansion of $\frac{1}{\left(6-\frac{x}{2}\right)}$ and state the range of validity. (5 marks)
 - (b) Use the binomial theorem to determine the value of the fifth term in the expansion of $(3x+5y)^{10}$ when $x=\frac{1}{3}$ and $y=\frac{1}{5}$. (5 marks)
 - (c) Show that for small values of x, $\sqrt[3]{\frac{1-\frac{x}{3}}{1+\frac{x}{3}}} = 1 \frac{2x}{9} + \frac{2x^2}{81}$ approximately.
 - (ii) By setting $x = \frac{2}{5}$ in (c)(i), determine the value of $\sqrt[3]{\frac{13}{17}}$ correct to 4 decimal places. (10 marks)

THIS IS THE LAST PRINTED PAGE.