2521/102

2602/103

2601/103

2603/103

ENGINEERING MATHEMATICS I

June/July 2023 Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN ELECTRICAL AND ELECTRONIC ENGINEERING (POWER OPTION) (TELECOMMUNICATION OPTION) (INSTRUMENTATION OPTION)

MODULE I

ENGINEERING MATHEMATICS I

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:

Answer booklet;

Drawing instruments;

Mathematical tables/Non-programmable scientific calculator.

This paper consists EIGHT questions.

Answer any FIVE questions.

All questions carry equal marks.

Maximum marks for each part of a question are as indicated.

Candidates should answer the questions in English.

This paper consists of 4 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

© 2023 The Kenya National Examinations Council

Turn over

1. (a) Solve the equations:

(i)
$$9 \times 27^{2x+1} = 81^{x-1}$$

(ii)
$$7^{3x-1} = 4(10^{x+2})$$

the set of (10 marks)

(b) Solve the equations:

(i)
$$\log_2(x+1) - \log_2 x = \log_2(x-1)$$

(ii)
$$3\log_2 x + \log_x 64 = 11$$

(10 marks)

2. (a) Three electric charges Q1, Q2 and Q3 in coloumbs in a d.c circuit satisfy the simultaneous equations:

$$3Q_1-2Q_2+Q_3=-1$$

$$Q_1 + Q_2 + 2Q_3 = 8$$

$$2Q_1 + 3Q_2 - 4Q_3 = 12$$

Use elimination method to solve the equations.

(12 marks)

(b) Solve the equation:

$$4^{2x}-6(4^x)+8=0$$

(8 marks)

3. (a) Prove the identities:

(i)
$$\frac{\cos \theta}{1 + \sin \theta} = \sec \theta - \tan \theta$$

(ii)
$$\cos(x+90^\circ) + \cos(x-90^\circ) = -2\sin x$$

(9 marks)

(b) Solve the equation:

$$6\cos^2\theta + \sin\theta - 5 = 0$$
 for $0^\circ \le \theta \le 360^\circ$

(11 marks)

4. (a) Given that $f(x) = \frac{3x+5}{5x-7}$, determine:

(i)
$$f^{-1}(x)$$

(ii)
$$f^{-1}(2)$$

(6 marks)

(b) Solve the equation:

$$x = \sin^{-1} \frac{1}{2}$$
 for $0 \le x \le 720^{\circ}$ (4 marks)

- (c) Solve the equations:
 - (i) $\cosh x + 2 \sinh x = 0$
 - (ii) $\sinh^2 x \sinh x 2 = 0$ (10 marks)
- 5. (a) Given the complex numbers $z_1 = 5 + j2$, $z_2 = 3 j4$ and $z_3 = 1 + j2$, determine in the form a + jb:
 - (i) $2z_1 + z_2 z_3$
 - (ii) $\frac{z_1 + z_3}{z_2 z_1}$ (8 marks)
 - (b) Show that z=2 is a root of the equation $z^3-2z^2+z-2=0$.
 - (ii) Hence solve the equation for the other roots. (8 marks)
 - (c) Convert the equation $\frac{x^2}{4} + \frac{y^2}{9} = 1$ to polar form giving the answer in the form $r = f(\theta)$ (4 marks)
- 6. (a) Determine the number of six digit codes which can be generated using the digits 1, 2, 3, 4, 5 and 6 if it must end with an even digit. (6 marks)
 - (b) Use the binomial theorem to expand $(1+2x)^{\frac{1}{3}}$ as far as the term in x^2 and state the values of x for which the expansion is valid. (5 marks)
 - (c) (i) Expand using binomial theorem the function $\left(\frac{1+x}{1-x}\right)^{\frac{1}{3}}$ up to the term in x^2
 - (ii) Hence evaluate $\sqrt[3]{\frac{3}{2}}$.

(9 marks)

7. (a) Differentiate $f(x) = \frac{1+x}{1-x}$ from first principles. (6 marks)

- (b) Determine the stationary points of the function $f(x) = 4x^3 + 3x^2 6x + 11$ and classify them. (9 marks)
- (c) The resistance R of a cable depends on its radius r and its length x such that:

 $R = \frac{kx}{r^2}$ where k is a constant. Determine the percentage change in R if x is increased by 2% and r is decreased by 0.5%. (5 marks)

8. (a) Evaluate the integrals:

(i)
$$\int \frac{x^2 + 2x}{(x-1)(x^2+2)} dx$$

(ii)
$$\int_0^\pi x \cos 2x \, dx$$

(14 marks)

(b) Determine the x-co-ordinate of the centroid of the region bounded by the x-axis, the y-axis and the line y=2-x. (6 marks)

THIS IS THE LAST PRINTED PAGE.