2601/102
2602/102
2603/102
PHYSICAL SCIENCE, MECHANICAL SCIENCE AND ELECTRICAL ENGINEERING PRINCIPLES
Oct./Nov. 2022
Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING (POWER OPTION) (TELECOMMUNICATION OPTION) (INSTRUMENTATION OPTION) MODULE I

PHYSICAL SCIENCE, MECHANICAL SCIENCE AND ELECTRICAL ENGINEERING PRINCIPLES

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination: drawing instruments;

non-programmable scientific calculator

This paper consists of EIGHT questions in THREE sections; A, B and C.

Answer ONE question from section A, ONE question from section B and THREE questions from section C in the answer booklet provided.

All questions carry equal marks.

Maximum marks for each part of a question are as indicated.

Candidates should answer the questions in English.

Take gravitational force g = 9.81 N/Kg.

This paper consists of 7 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

© 2022 The Kenya National Examinations Council.

Turn over

SECTION A: PHYSICAL SCIENCE

Answer ONE question from this section.

1.	(a)	Define each of the following with respect to radioactivity:			
		(i) (iii)	half life; nuclear fission.	(2 marks)	
	(b)		State: (I) Hess's law; (II) three properties of acids. Distinguish between ionic bonding and covalent bonding.	(6 marks)	
	(c)	A body moves in a harmonic motion from point A to point B. When the body is 0.75 m from the mid-point, its velocity is 11 m/s and when it is 2 m away from the mid-point, its velocity is 3 m/s. Determine the:			
		(ii)	Amplitude of the body; angular velocity of the body; periodic time.	(9 marks)	
	(d)	Draw a Z-direc	labelled diagram of an electromagnetic wave propagating in the etion.	(3 marks)	
2.	(a)	(i)	Define the term specific heat capacity.		
		(ii)	A copper container of mass 500 g contains 1 litre of water at 20 °C. Determine the quantity of heat required to raise the temperature of the water to boiling point. Assume that there are no losses. Take: Specific heat capacity of copper = 0.39 kJ/kgk. Specific heat capacity of water = 4.2 kJ/kgk 1 litre of water has a mass of 1 kg.	(7 marks)	
	(b)	State: (i) (ii)	Pressure law of a gas. Charles law of a gas.	(4 marks)	
	(c)	(i)	State two properties of X-rays.		
		(ii)	With the aid of a diagram, explain the principle of operation of Geiger tube for detecting radiations.	Muller (9 marks)	

SECTION B: MECHANICAL SCIENCE

Answer ONE question from this section.

- 3. (a) (i) Define angular velocity.
 - (ii) A body moves in a circular path of radius 20 m in 1 second. The radius from the centre of the body sweeps an angle of 36°. Determine the:
 - (I) average angular velocity of the body;
 - (II) linear velocity of the body.

(6 marks)

- (b) (i) State;
 - (I) Hooke's law;
 - (II) Newton's second law of motion.
 - (ii) A mass of 8 kg is dropped vertically to a horizontal plane. The mass falls with a velocity of 10 m/s hitting the plane in 40 milliseconds and bounces back at a velocity of 6 m/s. Determine the average impulse force on the plane.

(8 marks)

- (c) (i) State the first law of thermodynamics.
 - (ii) Explain each of the following terms with reference to thermodynamics.
 - (I) Enthalpy;
 - (II) Entropy.

(6 marks)

4. (a) State Archimedes principle.

(2 marks)

- (b) With the aid of a diagram, explain the principle of operation of a bourdon tube gauge.

 (6 marks)
- (c) (i) Define each of the following:
 - I. moment;
 - II. torque.

2601/102 2602/102 2603/102 Oct./Nov. 2022 (ii) Figure 1 shows a beam supported at points A and B. Loads of 600 N, 800 N and 400N act on the beam as shown. Determine the magnitude of the reactions at point A and B. (8 marks)

Fig. 1

- (d) Distinguish between each of the following types of forces:
 - (i) Equilibrium and equilibrant;
 - (ii) Coplanar and concurrent.

(4 marks)

(7 marks)

SECTION C: ELECTRICAL ENGINEERING PRINCIPLES

Answer any THREE questions from this section.

- 5. (a) (i) Define the term electrolysis citing two areas of its application.
 - (ii) An e.m.f source of 5 V supplies a current of 3 A for 10 minutes to a given load.

 Determine the amount of energy generated. (5 marks)
 - (b) Ten 1.5 V cells, each having an internal resistance of 0.2Ω are connected in series to a load of 58 Ω . Determine the:
 - (i) current flowing in the circuit;
 - (ii) potential difference between the battery terminals.
 - (c) State **two** merits of thermocouples. (2 marks)
 - (d) With the aid of a labelled diagram, explain the operation of an attraction type moving iron instrument. (6 marks)

6. (a) State the superposition theorem.

- (2 marks)
- (b) Figure 2 shows a resistor network. Using superposition theorem determine the current flowing through each resistor. (11 marks)

Fig. 2

- (c) An alternating voltage is given by the expression: $v = 282.8 \sin 414t$ volts. Determine the:
 - (i) r.m.s voltage;
 - (ii) frequency;
 - (iii) instantaneous value of voltage when t = 4 ms.

(7 marks)

- 7. (a) With the aid of a labelled diagram, explain the hytereis loop of a magnetic material. (6 marks)
 - (b) Figure 3 shows a magnetic circuit of cast steel of relative permittivity 750. A coil of 200 turns is wound on path 1.

Fig. 3

2601/102 2602/102 2603/102 Oct./Nov. 2022

5

Turn over

Determine the:

- (i) total reluctance in the circuit;
- (ii) total flux in the circuit;
- (iii) flux density in path 2.

(8 marks)

(d) With the aid of a diagram, explain the principle of operation of a single phase transformer.

(6 marks)

8. (a) Define the term electric flux density citing its unit.

(2 marks)

- (b) Three capacitors of $3\mu F$, $6\mu f$ and $12\mu F$ are connected in series across a 350 V supply. Determine the:
 - (i) equivalent circuit capacitance;
 - (ii) charge on the 12μF capacitor;
 - (iii) potential difference across the 3μF capacitor.

(6 marks)

- (c) A coil of resistance $5\,\Omega$ and inductance 120 mH is connected in series with a 100 μ F capacitor to a 300 V, 50 Hz a.c supply. Determine the circuit's:
 - (i) total impedance
 - (ii) phase angle in degrees.

(8 marks)

(d) Derive the expression for resonant frequency in an ideal R-L-C series circuit.

(4 marks)

THIS IS THE LAST PRINTED PAGE.

2601/102 2602/102 2603/102 Oct/Nov. 2022