APPLY ENGINEERING MATHEMATIC

UNIT CODE: ENG/OS/EIT/CC/01/6/A

UNIT DESCRIPTION

This unit describes the competencies required by an Instrumentation Technician to apply a wide range of engineering mathematics in their work. This includes applying algebraic functions, Complex numbers, coordinate geometry, carrying out binomial expansion, calculus, ordinary differential equations, Laplace transforms, power series, Statistics, Fourier series, Vector theory, Matrix and Numerical methods in solving problems

ELEMENTS	PERFORMANCE CRITERIA
These describe the key outcomes	These are assessable statements which specify the
which make up workplace	required level of performance for each of the
function.	elements.
	Bold and italicized terms are elaborated in the
	Range.
1. Apply Algebra	1.1 Calculations involving Indices are performed
	as per the concept
	1.2 Calculations involving Logarithms are
	performed as per the concept
	1.3 Scientific calculator is used in solving
	mathematical problems in line with
	manufacturer's manual
	1.4 Simultaneous equations are performed as per
	the rules
	1.5 Quadratic equations are calculated as per the
	concept
2. Apply Trigonometry and	2.1 Calculations are performed using
hyperbolic functions	trigonometric rules
	2.2 Calculations are performed using <i>hyperbolic</i>
	functions
3. Apply complex numbers	3.1 Complex numbers are represented using
	Argand diagrams
	3.2 Operations involving complex numbers are
	performed
	3.3 Calculations involving complex numbers are
	performed using De Moivre's theorem
4. Apply Coordinate Geometry	1.1 Polar equations are calculated using
	coordinate geometry
	1.2 Graphs of given polar equations are drawn
	using the Cartesian plane
	1.3 Normal and tangents are determined using
	coordinate geometry
5. Carry out Binomial	5.0 Roots of numbers are determined using
Expansion	binomial theorem

	distributions, mathematical expectation
	sampling distributions are performed
11 Apply Fourier Series	11.1 Fourier series coefficients are obtained
11. Apply Fourier Series	
	using Fourier series techniques
	11.2 Fourier series for 2π to T is are obtained
	using Fourier series techniques
	11.3 Fourier series for odd and even functions are
	obtained using Fourier series techniques
	11.4 Harmonic analysis is performed using
	numerical methods
12.Apply Vector theory	12.1 Calculations involving vector algebra, dot
	and cross products using vector theory
	12.2 Gradient, Divergence and Curl are obtained
	12.3 Vector calculations are performed using
	Green's theorem
	12.4 Vector calculations are performed using
	Stoke's theorem
	12.5 Conservative vector fields and line and
	surface integrals are obtained using Gauss's
	theorem
13. Apply Matrix	13.1 Determinant and inverse of 3x3 matrix are
	obtained
	13.2 Solutions of simultaneous equations are
	obtained
	13.3 Calculation involving Eigen values and
	Eigen vectors are performed
14. Apply Numerical methods	14.1 Roots of polynomials are obtained using
	iterative numerical methods
	14.2 Interpolation and extrapolation are
	performed using numerical methods
15. Apply concepts of probability	15.1Probability events are determined from
for work	dependent, independent and mutually
	exclusive
	15.2 Counting is done using permutation,
	combination, tree diagrams and Venn
	diagrams techniques
16. Perform commercial	16.1 Exchange rate calculations are done using
calculations	devaluation and revaluation
	16.2 Sales, stock turnover and profit and loss are
	determined
	16.3 Incomes, salaries and wages are calculated
17. Perform estimations,	17.1 Measurement information in workplace is
measurements and	extracted and interpreted
calculations of quantities	17.2 Appropriate workplace measuring tools and
	are identified and selected

17.3 Conversions are performed between units of measurement
17.4 Measurements are estimated and taken17.5 Length, width, height, perimeter, area and
angles of <i>figures</i> are calculated 17.6 Volume and surface area of figures are calculated
17.7Information is recorded using mathematical language and symbols appropriate for the
task

RANGE

This section provides work environments and conditions to which the performance criteria apply. It allows for different work environments and situations that will affect performance.

Variable	Range
Hyperbolic functions include but	• Sinh x
not limited to:	• Cosh x
	• Cosec x
	• Coth x
	• Tanh x
	• Sech x
Figures include but not limited to:	• Triangles
	• Squares
	• Rectangles
	Circles
	• Spheres
	• Cylinders
	• Cubes
	Polygons
	• Cuboids
	• Pyramids
Quantities include but not limited	• Weight,
to:	• Mass
	• Area
	• Volume
	• Length
	• Width
	• Depth
	• Perimeter

REQUIRED SKILLS AND UNDERSTANDING

Required Skills

The individual needs to demonstrate the following skills:

• Applying fundamental operations	Problem solving
(addition, subtraction, division,	Applying statistics
multiplication)	Drawing graphs
• Using and applying mathematical	• Using different measuring tools
formulas	Logical thinking

Required knowledge

The individual needs to demonstrate knowledge of:

- Fundamental operations (addition, subtraction, division, multiplication)
- Calculating area and volume
- Types and purpose of measuring instruments
- Units of measurement and abbreviations
- Rounding techniques
- Types of fractions
- Types of tables and graphs
- Presentation of data in tables and graphs
- Vector operations
- Matrix operations

EVIDENCE GUIDE

This provides advice on assessment and must be read in conjunction with the performance criteria, required skills, knowledge and range.

1. Critical aspects	Assessment requires evidence that the candidate:	
of Competency	1.1 Applied Trigonometry and hyperbolic functions	
	1.2 Applied complex numbers	
	1.3 Determined angles and length in triangles	
	1.4 Applied Calculus	
	1.5 Solved Ordinary differential equations	
	1.6 Applied Laplace transforms	
	1.7 Applied Power Series	
	1.8 Applied Fourier Series	
	1.9 Applied Vector theory	
	1.10 Applied Matrix	
	1.11 Identified and selected measuring s	
	1.12 Collected, Analyzed and presented data	
	1.13 Applied Numerical methods	
2.0 Resource	The following resources should be provided:	
Implications	2.1 Access to relevant workplace or appropriately simulated	
	environment where assessment can take place	
	2.2 Measuring	
	2.3 Materials relevant to the proposed activity or tasks	
3.0 Methods of	Competency in this unit may be assessed through:	
Assessment	3.1 Observation	
	3.2 Oral questioning	
•	•	

	3.3 Written test
	3.4 Portfolio of Evidence
	3.5 Interview
	3.6 Third party report
Context of	Competency may be assessed individually in the actual
Assessment	workplace or
	through accredited institution
Guidance	Holistic assessment with other units relevant to the industry
information for	sector, workplace and job role is recommended.
assessment	

easy wet. com