ELECTRICAL PRINCIPLES

UNIT CODE: ENG/CU/ET/CR/04/6/A

Relationship to Occupational Standards

This unit addresses the unit of competency: Apply Electrical principles

Duration of Unit: 90 hours

Unit Description

This unit describes the competencies required by a technician in order to apply a wide range of electrical principles in their work. Which includes; use of the concept of basic electrical quantities, use of the concepts of D.C and A.C circuits in electrical installation, use of basic electrical machine, use of power factor in electrical installation, use of earthing in electrical installations, apply lightning protection measures, apply electromagnetic field theory , apply electrodynamics, apply energy and momentum in electromagnetic field, apply transient in electrical circuit analysis, use two port network, demonstrate understanding of refrigeration and air conditioning

Summary of Learning Outcomes

- 1. Use the concept of basic Electrical quantities
- 2. Use the concepts of D.C and A.C circuits in electrical installation
- 3. Use of basic electrical machine
- 4. Use of power factor in electrical installation
- 5. Use of earthing in Electrical installations
- 6. Use of earthing in electrical installation
- 7. Apply lightning protection measures
- 8. Apply Electromagnetic field theory
- 9. Apply Electrodynamics
- 10. Apply Energy and momentum in Electromagnetic field
- 11. Apply Transient in Electrical circuit analysis
- 12. Use two port network
- 13. Demonstrate understanding of Refrigeration and Air conditioning

Learning Outcome	Content	Suggested Assessment
		Methods
1. Use the concept of basic Electrical quantities	 The meaning of SI unit SI unit of various types of Electrical parameters Ohm's law Calculations involving various Electrical parameters e.g Power, Current, Voltage, Resistance Instruments used in measuring various types of Electrical parameters 	 Written tests Oral questioning Assignments Supervised exercises
2. Use the concepts of D.C and A.C circuits in electrical installation	• AC and DC, parallel and series	 Written tests Oral questioning Assignments Supervised exercises
3. Use of basic electrical machine	 Types of Electrical machines DC machines, AC Single and three phase motors, generators and Transformers Motor starting methods e.g DOL Star-Delta Auto-transformer Resistance starter Shaded pole Split phase Capacitor start 	 Assignments Oral questioning Supervised exercises Written tests Practical tests

Learning Outcomes, Content and Suggested Assessment Methods

		 Capacitor Start and run Face plate Starting Application of AC and DC machines Special machines and their Applications Electric Drives 	
4.	Demonstrate understanding of three phase power supply	 Meaning of Terms Three phase power supply connection Star connection Delta connection Voltage, Current and power calculation Measurements of power Wattmeter methods Interconnection of three phase power supply Star- Delta and Delta- Star 	 Assignments Oral questioning Practical tests Observation Written test
5.	Use of power factor in electrical installation	 Meaning of power factor Meaning of terms Power triangle Power factor correction 	 Assignments Oral questioning Practical tests Observation Supervised exercises Written tests
6.	Use of earthing in Electrical installations	 Terms in Earthing Earthing points in Electrical installation Methods of earthing Factors to consider in selecting an earthing method Testing an earthing system 	 Assignments Supervised exercises Written tests Practical test
7.	Apply lightening protection measures	 Meaning of lightening Lightening strokes and their types Lightening protection components Testing a lightening system Application of lightening system Maintenance of lightening system 	 Assignments Oral questioning Supervised exercises Written tests

8. Apply Electromagnetic field Theory	 Meaning of Electromagnetic Field Theory Sources of Electromagnetic Fields Detectors of Electromagnetic radiation Application of Electromagnetic waves Electromagnetics Laws Faraday's Law Lenz's law Fleming's Laws Properties and Effects of Electromagnetic waves Wave Characteristics and Shielding Skin Effect 	 Assignments Oral questioning Supervised exercises Written tests
9. Apply Electrodynamics	 Meaning of Electrostatics Identification of Electrostatic terms and their meaning Meaning of terms in magnetostatics Electrodynamics laws Faraday's law 	 Assignments Oral questioning Supervised exercises Written tests
 10. Apply Energy and Momentum in Electromagnetic field 11. Apply transients in Electrical Circuit Analysis 	 Energy conservation theorem: Poyntings' Theorem Momentum Energy Flow Electromagnetic Energy flow Meaning of Growth and decay in R-L & R-C circuits Calculations involving R-L& R-C circuits Application of Growth and decay in	 Assignments Oral questioning Supervised exercises Written tests Assignments Oral questioning Supervised exercises Written tests
12. Use Two Port networks	 R-L & R-C Circuits Meaning of passive networks Types of Passive network Characteristic impedance in T & pie networks Design of T & pie networks Transmission lines 	 Assignments Oral questioning Supervised exercises Written tests

	ABCD ConstantsNetwork in cascade	
13. Demonstrate understanding of Refrigeration and Air conditioning	 Meaning of Refrigeration and Air Conditioning Operation of Refrigeration and Air conditioning Plant layout of Refrigeration and Air conditioning system 	 Assignments Oral questioning Supervised exercises Written tests

,asylvet.com

Suggested Methods of Instruction

- Group discussions
- Demonstration by trainer
- Exercises by trainee

Recommended Resources

- Scientific Calculators
- Relevant reference materials
- Stationeries
- Electrical workshop
- Relevant practical materials
- Dice
- Computers with internet connection