COMMON UNITS OF LEARNING

easylvet.com

ENGINEERING MATHEMATICS

UNIT CODE: ENG/CU/ET/CC/01/6/A

Relationship to Occupational Standards

This unit addresses the unit of competency: Apply mathematical skills

Duration of Unit: 70 hours

Unit Description

This unit describes the competencies required by an Electrical Technician to apply a wide range of engineering mathematics in their work. This includes applying algebraic functions, trigonometry and hyperbolic functions, complex numbers, coordinate geometry, binomial expansion, calculus, ordinary differential equations, Laplace transforms, power series, Statistics, Fourier series, vector theory, matrix, numerical methods, probability, commercial calculations, estimations and measurements in solving problems

Summary of Learning Outcomes

- 1. Apply Algebra
- 2. Apply Trigonometry and hyperbolic functions
- 3. Apply complex numbers
- 4. Apply Coordinate Geometry
- 5. Carry out Binomial Expansion
- 6. Apply Calculus
- 7. Solve Ordinary differential equations
- 8. Apply Laplace transforms
- 9. Apply Power Series
- 10. Apply Statistics
- 11. Apply Fourier Series
- 12. Apply Vector theory
- 13. Apply Matrix
- 14. Apply Numerical methods
- 15. Apply concept of probability for work

- 16. Perform commercial calculations
- 17. Perform Estimations, Measurements and calculations of quantities

Learning Outcomes, Content and Suggested Assessment Methods

Electrical Curriculum		
Learning Outcome	Content	Suggested Assessment Methods
1. Apply Algebra	 Base and Index Law of indices Indicial equations Laws of logarithm Logarithmic equations Conversion of bases Use of calculator Reduction of equations Solution of equations reduced to quadratic form Solutions of simultaneous linear equations in three unknowns Solutions of problems involving AP and GP 	 Written tests Oral questioning Assignments Supervised exercises
2. Apply Trigonometry and hyperbolic functions	 Half -angle formula Factor formula Trigonometric functions Parametric equations Relative and absolute measures Measures calculation Meaning of hyperbolic equations Properties of hyperbolic functions Evaluations of hyperbolic functions Hyperbolic identities 	 Written tests Oral questioning Assignments Supervised exercises

П	0.1 1.7.1	
	Osborne's Rule	
	• Ashx+bshx=C equation	
	• One-to-one relationship in	
	functions	
	• Inverse functions for one-to-one	
	relationship	
	 Inverse functions for 	
	trigonometric functions	
	 Graph of inverse functions 	
	• Inverse hyperbolic functions	
3. Apply complex	• Meaning of complex numbers	 Assignments
numbers	• Stating complex numbers in	 Oral questioning
	numbers in terms of conjugate	 Supervised exercises
	argument and	• Written tests
	• Modulus	
	• Representation of complex	
	numbers on the Argand diagram	
	• Arithmetic operation of complex	
	numbers Application of De	
	Moivre's theorem	
	• Application of complex numbers	
	to engineering	
4. Apply Coordinate	 Polar equations 	 Written tests
Geometry	• Cartesian equation	 Oral questioning
	 Graphs of polar equations 	 Assignments
	 Normal and tangents 	 Supervised exercises
	• Definition of a point	
	• Locus of a point in relation to a	
	circle	
	• Loci of points for given	
	mechanism	
5. Carry out Binomial	Binomial theorem Power series	Written tests
Expansion	using binomial theorem Roots of	 Oral questioning
	numbers using binomial	Assignments
	theorem.	 Supervised exercises
	• Estimation of errors of small	
	changes using binomial theorem.	

6 A 1 C 1 1	3.5	***
6. Apply Calculus	Meaning of derivatives of a	 Written tests
	function	 Oral questioning
	 Differentiation from fist 	 Assignments
	principle	 Supervised exercises
	 Tables of some common 	
	derivatives	
	• Rules of differentiation	
	• Rate of change and small change	
	• Stationery points of functions of	
	two variables	
	 Meaning of integration 	
	• Indefinite and definite integral	
	 Methods of integration 	
	application of integration.	
	 Integrals of hyperbolic and 	
	inverse functions	
7. Solve Ordinary	Types of first order differential	Written tests
differential	equations	 Oral questioning
equations	 Formation of first order 	 Assignments
	differential equation	 Supervised exercises
	 Solution of first order 	1
	differential equations	
	 Application of first order 	
	differential equations	
	 Formation of second order 	
	differential equations for various	
	systems	
	 Solution of second order 	
	differential equations	
	 Application of second order 	
	differential equations	

8. Apply Laplace transforms	 Meaning of Laplace transforms deriving Laplace transforms from first principles State properties of Laplace transform Determination of inverse LT of simple transforms and partial fractions Solution of differential equation by LT Solution of simultaneous differential equation by given initial conditions 	 Written tests Oral questioning Assignments Supervised exercises
9. Apply Power Series	 Meaning of the term power series Taylor's theorem Deduction of Maclaurin's theorem to obtain power series Application of Taylor's theorem and Maclaurin's theorems in numerical work 	 Written tests Oral questioning Assignments Supervised exercises
10. Apply Statistics	 Classification of data Grouped data Ungrouped data Data collection Tabulation of data Class intervals Class boundaries Frequency tables Diagrammatic and graphical presentation of data e.g. Histograms Frequency polygons Bar charts Pie charts Cumulative frequency curves Measures of central tendency mean, mode and median 	 Assignments Oral questioning Supervised exercises Written tests Simulation Data modeling

© 2019, TVET CDACC

	 Measures of dispersion Variance and standard deviation Definition of probability Laws of probability Expectation variance and S.D. Types of distributions Mean, variance and SD of probability distributions Application of probability distributions 	
11. Apply Fourier Series	 Determination of the Fourier series as a periodic function of the period 2π and extend to π Determination of Fourier series of non-periodic functions over a given range Determination of Fourier series for even and odd functions and the half-range series for a given function 	 Assignments Oral questioning Supervised exercises Written tests
12. Apply Vector theory	 Definition of dot and cross product of vectors Solution of problems involving dot and cross production of cross Definition of operators Definition of vector field Solutions of problems involving vector fields Definition of Gradient, Divergence and curl Solutions of involving Gradient, Divergence and curl Application of vectors 	 Assignments Oral questioning Supervised exercises Written tests
13. Apply Matrix	Matrix operation	Assignments
methods	• Determinant of 3x3 matrix	Oral questioning

	 Inverse of 3x3 matrix Solutions of linear simultaneous equations in three unknowns Application of matrices 	Supervised exercisesWritten tests
14. Apply Numerical methods	 Meaning of interpolation and extrapolation Application of interpolation Application of interactive methods to solve equations Application of interactive 	 Assignments Oral questioning Supervised exercises Written tests
15. Apply concepts of probability in work	 methods to areas and volumes Meaning of probability Types of probability events Dependent Independent Mutually exclusive Laws of probability Counting techniques Permutation Combination Tree diagrams Venn diagrams 	 Written tests Assignments Supervised exercises
16. Perform commercial calculations	 Product pricing Average sales determination Stock turnover Calculation of incomes Profit and loss calculations Salaries Gross Net Wages Time rate Flat rate Overtime Piece rate Commission Percentage 	 Oral questioning Written tests Assignments Supervised exercises

	 Bonus Conversion of one currency to another Exchange rates calculation Devaluation Revaluation 	
17. Perform estimations, measurements and calculations of quantities	 Units of measurements and their symbols Conversion of units of measurement Calculation of length, width, height, perimeter, area and angles of figures Measuring tools and equipment Performing measurements and estimations of quantities 	 Assignments Oral questioning Practical tests Observation Supervised exercises Written tests

Suggested Methods of Instruction

- Group discussions
- Demonstration by trainer
- Exercises by trainee

Recommended Resources

- Scientific Calculators
- Rulers, pencils, erasers
- Charts with presentations of data
- Graph books
- Dice
- Computers with internet connection