APPLY ELECTRICAL PRINCIPLES

UNIT CODE: ENG/OS/ET/CC/04/6/A

UNIT DESCRIPTION

This unit describes the competencies required by a technician in order to apply a wide range of electrical principles in their work. Which includes; use of the concept of basic electrical quantities, use of the concepts of D.C and A.C circuits in electrical installation, use of basic electrical machine, use of power factor in electrical installation, use of earthing in electrical installations, apply lightning protection measures, apply electromagnetic field theory, apply electrodynamics, apply energy and momentum in electromagnetic field, apply transient in electrical circuit analysis, use two port network, demonstrate understanding of refrigeration and air conditioning

ELEMENTS AND PERFORMANCE CRITERIA

ELEMENT	PERFORMANCE CRITERIA	
These describe the	These are assessable statements which specify the required	
key outcomes which	level of performance for each of the elements.	
make up workplace	Bold and italicized terms are elaborated in the Range.	
function.	Bott and nanet, ca terms are emborated in the Range.	
1. Use the concept	1.1 Basic <i>SI unit</i> s in Electrical are identified	
of basic Electrical	1.2 <i>Quantities</i> of Charge, force, work and power are	
quantities	identified	
quantities		
	1.3 Perform calculations involving Ohm's law i.e Current,	
	Resistance and voltage	
	1.4 Calculations involving various electrical quantities are	
0 77 1	performed	
2. Use the concepts	2.1 Calculations involving parallel and series circuits are	
of D.C and A.C	performed	
circuits in	2.2 Calculations involving DC and AC Network theorems are	
electrical	performed. E.g. Kirchoff's laws, Superposition,	
installation	Thevinin's, Norton's	
3. Use of basic	3.1 Types of various electrical machines are identified	
electrical machine	3.2 Single phase and three phase motor starting methods are	
	performed	
	3.3 DC motor starting methods are performed	
	3.4 Calculations involving single phase and three phase AC	
	and DC Motors are performed	
	3.5 Calculations involving single and three phase AC and DC	
	transformers are performed	
	3.6 Calculations involving single and three phase generators	
	are performed	
	3.7 Special machines are identified	
	3.8 Calculations involving special machines are performed	
	3.9 Calculations involving Electric Drives are performed	
4. Demonstrate	4.1 Connections of three phase power supply are performed	
understanding of	as per the standard operating procedure	
6 5 5	1 01	

ELEMENT	' P	ERFORMANCE CRITERIA
These describe the		nese are assessable statements which specify the required
key outcomes which		vel of performance for each of the elements.
make up workplace		old and italicized terms are elaborated in the Range.
function.		
three pha	ase power 4.	2 Calculations involving three phase power supply
supply		connections are performed
	4.	3 Measurements of three phase power supply is performed
	4.	4 Interconnections of three phase power supply are
		performed as per the nature of the load.
5. Use of p		1 Power triangle is identified i.e. Active, Apparent and
factor in	electrical	reactive power
installati	on 5.	2 The use of power factor is performed
	5.	3 Calculations involving power factor correction is
		performed
		4 Methods of power factor correction are applied
6. Use of e		1 Earthing types are identified
Electrica		2 Earthing points on Electrical installation are identified
installati	ons 6.	3 Calculation involved in determining the earthing type is
		performed
	6.	4 Test on an earthing system is performed in line with the
		IEE regulations
7. Apply li		1 Types of lightening strokes are identified
protection	on 7.	2 Components of lightening protection system are
measure		identified
	7.	3 Test to be carried out in lightening protection system are
		established
0 4 1	7.	4 Application of lightening protection system is determined
8. Apply		1 Electromagnetic radiation sources are identified
Electron	_	2 Detectors of Electromagnetic radiations are determined
field The	•	3 Electromagnetic waves are applied
		4 Electromagnetics Laws are Identified
	8.	5 Behaviours and effects of Electromagnetic waves are
9. Apply	9.	established 1 Electrostatics terms are identified
9. Apply Electrod		2 Magnetostatics terms are identified
Liectiou	•	3 Electrodynamics laws are identified
10. Apply E		.1 Energy conservation theorem is identified
Moment		.2 Electromagnetic Energy flow is determined
Electron		.2 Electromagnetic Energy now is determined
field	ingilotto	
11. Apply tr	ansients 11	1 Growth and decay in R-L-C circuits are determined
in Electr		2 Calculations involving Growth and decay in R-L-C are
Circuit A		performed
12. Use Two	-	2.1 Basic passive networks are performed
12. USE TWO	71011 1	2.1 Dasie passive networks are performed

ELEMENT	PERFORMANCE CRITERIA	
These describe the	These are assessable statements which specify the required	
key outcomes which	level of performance for each of the elements.	
make up workplace	Bold and italicized terms are elaborated in the Range.	
function.		
networks	2.2 Characteristic impedance is determined	
	2.3 Types of transmission lines and their applications are	
	performed	
13. Demonstrate	13.1 Use of Refrigeration and Air conditioning is demonstrated	
understanding of	13.2 Installation of the Refrigeration and Air conditioning	
Refrigeration and	system is simulated	
Air conditioning		

RANGE

This section provides work environments and conditions to which the performance criteria apply. It allows for different work environments and situations that will affect performance.

Variable	Range
SI unit may include but not	Power – Watts (W)
limited to:	• Current – Amperes (A)
	• Resistance – Ohms(Ω)
	• Voltage – Volts (V)
2. Quantities may include but	• Charge
not limited to:	Force
	Work
	• Power

REQUIRED SKILLS AND KNOWLEDGE

This section describes the skills and knowledge required for this unit of competency.

Required Skills

The individual needs to demonstrate the following skills:

- Apply basic Electrical formulas
- Use of basic Electrical instruments
- Perform various unit conversions of Electrical quantities
- Electrical earthing
- Lightening arrestors
- Power factor correction
- logical thinking
- problem solving
- applying statistics
- drawing graphs
- Using different measuring tools

Required knowledge

The individual needs to demonstrate knowledge of:

- Electrical power calculations
- Various laws in Electrical engineering
- Electrical formulas
- Power triangle
- SI units of various electrical parameters
- Earthing testing
- Lightening arrestor testing
- Selecting the correct type of electrical machines for various uses
- Types and purpose of measuring instruments
- Units of measurement and abbreviations

EVIDENCE GUIDE

This provides advice on assessment and must be read in conjunction with the performance criteria, required skills and knowledge and range.

1 Critical aspects of	Assessment requires evidence that the candidate:
Competency	1.1 Applied the correct SI units of Electrical quantities
	1.2 Stated, Calculate and relates the quantities in Ohm's law
	1.3 Identified the components of an earthing system
	1.4 Stated and apply various laws in Electrical system
	1.5 Differentiated between AC and DC network
	1.6 Applied correct formulas in the calculation of AC and DC machines
	1.7 Used power triangle in calculating power factor
	1.8 Applied various methods in power factor correction
	1.9 Identified types of lightening arrestors and their applications
2. Resource	The following resources should be provided:
Implications	2.1 Access to relevant workplace or appropriately simulated
	environment where assessment can take place
	2.2 Measuring equipment
	2.3 Materials relevant to the proposed activity or tasks
3. Methods of	Competency in this unit may be assessed through:
Assessment	3.1 Practical Tests
	3.2 Oral Questioning
	3.3 Written tests
Context of Assessment	Competency may be assessed
	4.1 On job
	4.2 Off job
	4.3 During Industrial Attachment
Guidance information	Holistic assessment with other units relevant to the industry sector,
for assessment	workplace and job role is recommended.