

505

CHAPTER 6: COMPUTER PROGRAM DEVELOPMENT

Unit of learning code: ICT/CU/IT/CR/5/6

Related Unit of Competency in Occupational Standard: Develop A Computer Program

6.1 Introduction to the unit of learning

This unit specifies competencies required to develop computer program. It involves identifying

of programming concepts and approaches, identifying program development methodologies,

identifying program design, identifying of programming languages, performing of basic

structured programming, and performing basic internet programming.

6.2 Summary of Learning Outcomes

1. Identify Programming concepts and approaches.

2. Identify program development methodologies.

3. Identify Program design

4. Identify computer programming languages.

5. Perform Basic structured Programming using C language.

6. Perform Basic Internet programming

6.2.1 Learning Outcome 1: Identify Programming concepts and approaches.

6.2.1.1 Introduction to the Learning Outcome

This learning outcome specifies the content of competencies required to develop a

computer program. It entails the definition of various programming concepts i.e., program and

programming, types of a Language translator, and types of programming approaches.

6.2.1.2 Performance Standard

6.2.1.2.1 Identification of program and programming is done.

6.2.1.2.2 Language translators are identified.

6.2.1.2.3 Description of programming approaches is done.

ea
sy
tve
t.c
om

506

6.2.1.3 Information Sheet

Programming concepts

 Program-A computer program is a set of coded instructions given to the computer and

represents a logical solution to a problem. It directs a computer in performing various

operations/tasks on the data supplied to it.

Computer programs may be written by the hardware manufacturers, Software houses, or a

programmer to solve user problems on the computer.

Programming is the process of designing a set of instructions (computer programs) that can be

used to perform a particular task or solve a specific problem.

It involves the use of special characters, signs, and symbols found in a particular programming

language to create computer instructions.

The programming process is quite extensive. It includes analyzing an application, designing a

solution, coding for the processor, testing to produce an operating program, and developing other

procedures to make the system function.

The program created must specify in detail the logical steps to be taken & the method of

processing the data input into the computer to carry out the specified task.

A computer program performs the following:

 Accepts data from outside the computer as its input.

 Carries out a set of processes on the data within the computer memory.

 Presents the results of this processing as its output, and

 Stores the data for future use.

 Source program (source code)-Refers to the program statements that the programmer enters in

the program editor window, and which have not yet been translated into machine-readable form.

Source code is the code understood by the programmer and is usually written in a high-level

language or Assembly language.

ea
sy
tve
t.c
om

507

Object code (object program)- Refers to the program code that is in machine-readable (binary)

form.

Object code is the code the computer can understand and is produced by a Compiler or

Assembler after translating the Source program into a form that can be readily loaded into the

computer.

Language translators

A computer uses & stores information in binary form, and therefore, it cannot understand

programs written in either high-level or assembly languages. This means that any

program code written in Assembly language or high-level language must be translated

into Machine language before the computer can recognize & run these programs.

A Translator is special system software used to convert the Source codes (program

statements written in any of the computer programming languages) to their Object codes

(computer language equivalents).

The Translators reside in the main memory of the computer, and use the program code of

the high-level or Assembly language as input data, change the codes, and gives the output

program in machine-readable code.

Also, translators check for & identify some types of errors that may be present in the

program being translated, e.g., Syntax/grammatical errors. They will produce error

messages if there is a mistake in the code.

Types of language translators

i. Assembler

 An Assembler translates programs written in Assembly language into machine

language that the computer can understand and execute.

Functions of an Assembler.

 It checks whether the instructions are written are valid, and identifies any

errors in the program.

ea
sy
tve
t.c
om

508

The Assembler will display these errors as well as the complete source and object

programs. If the program has no errors, the job control will let it run immediately,

or save the object program so that it may run it later without translating it again.

 It assigns memory locations to the names the programmer uses.

E.g., the Assembler keeps a table of these names so that if an instruction refers to

it, the Assembler can easily tell the location to which it was assigned.

 It generates the machine code equivalent to the Assembly instructions.

Usually, the Assembler generates a machine code only when no errors are

detected. Some of the errors include;

- Typing mistakes.

- Using the wrong format for instruction.

- Specifying a memory location outside the range 0 – 2047.

ii. Interpreter

 An interpreter is a common kind of language processor. Instead of

producing the target program as a translation, an interpreter appears to

directly execute the operations specified in the source program on inputs

supplied by the user.

 In contrast, an interpreter reads a statement from the input, converts it to

an intermediate code, executes it, then takes the next statement in

sequence.

 If an error occurs, an interpreter stops execution and reports it.

iii. Compiler

A compiler translates the entire/whole source program into object code at once

and then executes it in machine language code. These machine code instructions

can then be run on the computer to perform the particular task as specified in the

high-level program.

ea
sy
tve
t.c
om

509

The process of translating a program written in a high-level source language into machine

language using a compiler is called Compilation.

For a given machine, each language requires its Compiler. E.g., for a computer to be able

to translate a program written in FORTRAN into machine language; the program must

pass through the FORTRAN compiler (which must ‘know’ FORTRAN as well as the

Machine language of the computer).

Functions of a compiler.

A Compiler performs the following tasks during the compilation process:

 It identifies the proper order of processing, to execute the process as fast as

possible & minimize the storage space required in memory.

 It allocates space in memory for the storage locations defined in the program to be

executed.

 It reads each line of the source program & converts it into machine language.

Figure 176

compiler

ea
sy
tve
t.c
om

510

 It checks for Syntax errors in a program (i.e., statements which do not conform

to the grammatical rules of the language). If there are no syntax errors, it

generates machine code equivalent to the given program.

 It combines the program (machine) code generated with the appropriate

subroutines from the library.

 It produces a listing of the program, indicating errors if any.

i. Linker

The linker is a computer program that links and merges various object files to make

an executable file. All these files might have been compiled by the separate

assembler.

The major task of a linker is to search and locate referenced module/routines in a

program and to determine the memory location where these codes will be loaded

making the program instruction have an absolute reference.

ii. Loader

 The loader is a part of the operating system and is responsible for loading executable

files into memory and execute them.

It calculates the size of a program (instructions and data) and creates memory space

for it. It initializes various registers to initiate execution.

Programming approaches

 Procedural

 Event-driven

 Object-oriented

 Internet-based

i. Procedural Programming

ea
sy
tve
t.c
om

511

Problem is broken down into procedures, or blocks of code that perform one task each. All

procedures taken together form the whole program. It is suitable only for small programs that

have a low level of complexity.

Example − For a calculator program that does addition, subtraction, multiplication, division,

square root and comparison, each of these operations can be developed as separate procedures.

In the main program, each procedure would be invoked based on the user’s choice.

ii. Object-oriented Programming

Here the solution revolves around entities or objects that are part of the problem. The solution

deals with how to store data related to the entities, how the entities behave and how they interact

with each other to give a cohesive solution.

Example − If we have to develop a payroll management system, we will have entities like

employees, salary structure, leave rules, etc. around which the solution must be built.

i. Event-Driven programming

Event-driven programming depends upon an event loop that is always listening for the new

incoming events. The working of event-driven programming is dependent upon events. Once

event loops, then events decide what to execute and in what order. –

ea
sy
tve
t.c
om

512

Figure 177 Event-driven programming

ii. Internet-based programming

The internet-based programming approach is also called web programming. web programming is

a set of web site development activities in WWW (World Wide Web) based on the public

network Internet. In the simplest case, each web site includes static web pages, but usually is an

aggregation of static and dynamic web pages. The later ones link under certain rules data sources

(structured and non-structured DB) and program codes (scripts), realizing some functionality.

This combination of web pages, scripts, and DB is called a web application. The web

applications are distributed (on one or more servers), working under HTTP, and available by a

browser or non-browser client application serving as a network interface. In detail, web

programming refers to writing, markup, and coding, involved in Web site building (known as

web development), which includes web content, web client and server scripting, and network

security.

6.2.1.4 Learning Activities

Practical exercise

ABC organization has recently employed you as a program developer expert. In preparation to

develop a program to run some operations in the company, the manager in consultation with

other ICT experts has requested you to lead a team in coming up with a detailed presentation on

some of the existing programming approaches that can be utilized.

Special instructions;

a. Using your computer, make a detailed PowerPoint presentation on the following

programming approaches

i. Procedural

ii. Event-driven

iii. Object-oriented

iv. Internet-based

b. Burn your presentation in a CD to be submitted to when required.

ea
sy
tve
t.c
om

513

6.2.1.5 Self-Assessment

1. What is the meaning of the following terms:

i. Computer program.

ii. Programming.

iii. Programming language.

2. Regarding programming, distinguish between Source program and Object code.

3. What are the function(s) of Assemblers, Interpreters, and Compilers in a computer

system?

4. What is the difference between a Compiler and an Interpreter?

6.2.1.6 Tools, Equipment, Supplies, and Materials

 Flow charts

 Data flow diagram

 Decision table

 Decision tree

 Web Authoring tools

 Notepad

 Computer

 Software

 Digital instructional material including DVDs and CDs

6.2.1.7 References

Blignaut, A. S., Hinostroza, J. E., Els, C. J., & Brun, M. (2010). ICT in education policy

and practice in developing countries: South Africa and Chile compared through SITES

2006. Computers & Education, 55(4), 1552–1563.

Computer Hardware. (n.d.). Retrieved September 30, 2020, from

https://web.stanford.edu/class/cs101/hardware-.

KIRIHATA, Y. (2009). Information processing apparatus and method, computer-

readable recording medium, and an external storage medium (United States Patent No.

US20090241114A1).

ea
sy
tve
t.c
om

514

Lehmann, S., & Schweitzer, B. (2006). Apparatus, system, and method for creating

customized workflow documentation (United States Patent No. US20060059423A1).

Nagar, T. (2019, December 3). What is software and types of software with examples?

YourStory.Com. https://yourstory.com/mystory/what-software-types-examples

6.2.1.8 Model answers to self-assessment

1. What is the meaning of the following terms?

i. Computer program- it is a set of coded instructions given to the computer and

represents a logical solution to a problem. It directs a computer in performing

various operations/tasks on the data supplied to it.

ii. Programming- is the process of designing a set of instructions (computer

programs) that can be used to perform a particular task or solve a specific

problem. It involves the use of special characters, signs, and symbols found in

a particular programming language to create computer instructions.

iii. Programming language- is a set of symbols (a language) that a computer

programmer uses to solve a given problem using a computer.

2. Concerning programming, distinguish between Source program and Object code.

- A source program refers to the program statements that the programmer enters in

the program editor window, and which have not yet been translated into machine-

readable form while an object code refers to the program code that is in machine-

readable (binary) form.

3. What is the function(s) of Assemblers, Interpreters, and Compilers in a computer

system?

Functions of assembler

 It checks whether the instructions are written are valid, and identifies any errors

in the program.

 It assigns memory locations to the names the programmer uses.

 It generates the machine code equivalent to the Assembly instructions.

Functions of interpreter

ea
sy
tve
t.c
om

515

 It reads a statement from the input, converts it to an intermediate code, executes

it, then takes the next statement in sequence.

 If an error occurs, an interpreter stops execution and reports it.

Functions of a compiler

 It identifies the proper order of processing, to execute the process as fast as

possible & minimize the storage space required in memory.

 It allocates space in memory for the storage locations defined in the program to

be executed.

 It reads each line of the source program & converts it into machine language.

 It checks for Syntax errors in a program (i.e., statements which do not conform to

the grammatical rules of the language). If there are no syntax errors, it generates

machine code equivalent to the given program.

 It combines the program (machine) code generated with the appropriate

subroutines from the library.

 It produces a listing of the program, indicating errors if any.

4. What is the difference between a Compiler and an Interpreter in programming?

-Interpreter translates just one statement of the program at a time into machine

code. Compiler scans the entire program and translates the whole of it into machine

code at once. An interpreter takes very less time to analyze the source code

ea
sy
tve
t.c
om

516

ea
sy
tve
t.c
om

517

6.2.2 Learning Outcome 2: Identify Program Development Methodologies

6.2.2.1 Introduction to the learning outcome

 This learning outcome specifies the content of competencies required to develop a

computer program. It entails the description of program specifications, program development

cycle, various types of development methodologies and Styles of programming.

6.2.2.2 Performance Standard

6.2.2.2.1 Description of program specifications is done.

6.2.2.2.2 Application of the program development cycle is done.

6.2.2.2.3 Types of development methodologies are identified.

6.2.2.2.4 Styles of programming are identified.

6.2.2.3 Information Sheet

Description of Program specifications

Program specification is the first step in developing a computer program.

 Program specification is also called program definition or program analysis.

 It requires the programmer to follow five specific tasks:

a. Specifying program objectives

b. Specifying desired output

c. Determining the required input

d. Defining processing requirements

e. Documentation specification

Task 1 - specify objectives, What are program objectives?

 Program objectives are the problems you are trying to solve.

 A clear statement should be written about the problem that needs a solution.

 This task defines the problem.

ea
sy
tve
t.c
om

518

 Task 2 - specify output, How do you determine the desired output?

 It is always best to specify outputs before inputs.

a. You need to know what you want to get out of the computer.

b. Then you can determine what will go into the computer.

 Sketch or write how the output will look when it is done.

Task 3 - input data - How do you determine the required input?

 The source and type of data must be known.

 The input must supply the program with data to produce the correct output.

Task 4 - processing requirements - How do you determine processing requirements?

 Processing that must take place to convert input data into output information must

correspond with the problem definition determined in task 1.

 A step-by-step logical algorithm must be determined to process the input data to output

information.

Tasks 5- program specifications document - What is included?

 Document the program objectives, desired outputs, needed inputs, and required processing.

 After these items are documented, then step 2, program design can commence.

Program development methodologies

Types of development methodologies

 Agile

 Crystal

 Rapid Application Development

 Agile

ea
sy
tve
t.c
om

519

AGILE methodology is a practice that promotes continuous iteration of development and

testing throughout the software development lifecycle of the project. In the Agile model, both

development and testing activities are concurrent, unlike the Waterfall model.

Click on the link below for further readings

https://youtu.be/rvTejAg_fbY

 Crystal method

Crystal family is a collection of agile software development methodologies that can be used for

different software projects depending upon size, complexity, criticality, and the number of

people involved. It was developed by Alistair Cockburn in early 1990 while working at IBM. He

interviewed different teams working on different projects to find the best practices followed by

teams. He found that these teams did not follow the formal methodologies or not using specific

technology for delivering successful software. However, they communicated frequently to

discuss the project. On the other hand, delayed or failed project teams tried to follow formal

methods with little team collaboration. This helped him to conclude that frequent communication

among team members can improve the software success rate. According to Cockburn’s

philosophy “To the extent that you can replace the written documentation with face to face

interaction, you can reduce the reliance on written ‘promissory’ notes and improve the likelihood

of delivering the system. Crystal methods focus on people and communication among people

rather than a process to frequently deliver working software.

 Rapid Application Development

The rapid Application Development model is based on prototyping and iterative development

with no specific planning involved. It focuses on gathering customer requirements through

workshops or focus groups, early testing of the prototypes by the customer using the iterative

concept, reuse of the existing prototypes (components), continuous integration, and rapid

delivery.

Program Development Life Cycle

ea
sy
tve
t.c
om

https://youtu.be/rvTejAg_fbY

520

-The program development life cycle is a set of steps or phases that are used to develop a

program in any programming language. Generally, the program development life cycle contains

7 phases, they are as follows

i. Problem Definition

ii. Program Design

iii. Coding

iv. Debugging

v. Testing

vi. Documentation

vii. Maintenance

Figure 178 program development life cycle(PDLC)

i. Problem Definition:

1. Problem Definition

2. Program Design

3. Coding

4. Debugging

5. Testing

6. Documentation

7. Maintenance

ea
sy
tve
t.c
om

521

 The first step in the process of program development is the thorough understanding and

identification of the problem for which is the program or software is to be developed.

 In this step, the problem has to be defined formally.

 All the factors like Input/output, processing requirement, memory requirements, error

handling, interfacing with other programs have to be taken into consideration in this

stage.

ii. Program Design:

 The next stage is the program design. The software developer makes use of tools like

algorithms and flowcharts to develop the design of the program.

o Algorithm

o Flowchart

iii. Coding:

 Once the design process is complete, the actual computer program is written, i.e. the

instructions are written in a computer language.

 Coding is generally a very small part of the entire program development process and also

a less time-consuming activity in reality.

 In this process all the syntax errors i.e. errors related to spelling, missing commas,

undefined labels etc. are eliminated.

 For effective coding some of the guidelines which are applied are :

o Use of meaningful names and labels of variables,

o Simple and clear expressions,

o Modularity with emphasis on making modules generalized,

o Making use of comments and indenting the code properly,

o Avoiding jumps in the program to transfer control.

iv. Debugging:

 At this stage, the errors in the programs are detected and corrected.

ea
sy
tve
t.c
om

522

 This stage of program development is an important process. Debugging is also known as

program validation.

 Some common errors which might occur in the programs include:

o Un initialization of variables.

o Reversing of an order of operands.

o Confusion of numbers and characters.

o Inverting of conditions eg jumping on zero instead of on not zero.

v. Testing:

 The program is tested on several suitable test cases.

 A test plan of the program has to be done at the stage of the program design itself.

 This ensures a thorough understanding of the specifications.

 The most trivial and most special cases should be identified and tested.

 It is always useful to include the maximum and minimum values of all variables as test

data.

vi. Documentation:

 Documentation is a very essential step in program development.

 Documentation helps the users and the people who maintain the software.

This ensures that future modifications if required can be done easily. Also, it is required during

redesigning and maintenance.

vii. Maintenance:

 Updating and correction of the program for changed conditions and field experience are

accounted for in maintenance.

 Maintenance becomes essential in the following situations:

o Change in the specification,

o Change in equipment,

o Errors are found during the actual execution of the program.

ea
sy
tve
t.c
om

523

Styles of programing

Types of styles programing

 Functional Programming

 Object-Oriented Programming

 Modular programming

Functional Programming

Here the problem, or the desired solution, is broken down into functional units. Each unit

performs its task and is self-sufficient. These units are then stitched together to form the

complete solution.

Example − A payroll processing can have functional units like employee data maintenance,

basic salary calculation, gross salary calculation, leave processing, loan repayment

processing, etc.

Object-Oriented Programming

Here the solution revolves around entities or objects that are part of the problem. The

solution deals with how to store data related to the entities, how the entities behave, and how

they interact with each other to give a cohesive solution.

Example − If we have to develop a payroll management system, we will have entities like

employees, salary structure, leave rules, etc. around which the solution must be built.

Modular progrmming

Modular programming is a software design technique that emphasizes separating the

functionality of a program into independent, interchangeable modules, such that each

contains everything necessary to execute only one aspect of the desired functionality.

6.2.2.4 Learning Activity

 Practical activity

special instructions

ea
sy
tve
t.c
om

524

Using your computer, develop a detailed document to be used by a newly employed

person in your organization capturing the step by step process of Program Development

Life Cycle

6.2.2.5 Self-Assessment

-You are provided with the following questions for self -assessment, attempt them and check

your responses

1. What is PDLC?

2. Which are the Three major program development approaches used in PDLC?

3. What is the difference between Functional programming and Modular Programming?

4. Why is the Design phase important in Program Development Life Cycle?

5. Which are the five common errors that can occur in a program during program

development?

6.2.2.6 Tools, Equipment, Supplies, and Materials

 Flow charts

 Data flow diagram

 Decision table

 Decision tree

 Web Authoring tools

 Notepad

 Computer

 Software

 Digital instructional material including DVDs and CDs

6.2.2.7 References

Blignaut, A. S., Hinostroza, J. E., Els, C. J., & Brun, M. (2010). ICT in education policy

and practice in developing countries: South Africa and Chile compared through SITES

2006. Computers & Education, 55(4), 1552–1563.

ea
sy
tve
t.c
om

525

Computer Hardware. (n.d.). Retrieved September 30, 2020, from

https://web.stanford.edu/class/cs101/hardware-

KIRIHATA, Y. (2009). Information processing apparatus and method, computer-readable

recording medium, and an external storage medium (United States Patent No.

US20090241114A1).

Lehmann, S., & Schweitzer, B. (2006). Apparatus, system, and method for creating

customized workflow documentation (United States Patent No. US20060059423A1).

Nagar, T. (2019, December 3). What is software and types of software with

examples? YourStory.Com. https://yourstory.com/mystory/what-software-types-

examples

6.2.2.7 Model answers to self-assessment

1. What is PDLC?

-PDLC is an abbreviation of Program Development Life Cycle. It is a set of steps or

phases that are used to develop a program in any programming language.

2. Which are the Three major program development approaches used in PDLC

i. Agile

ii. Crystal method

iii. Rapid Application Development

3. What is the difference between Functional programming and Modular Programming

-In functional programming, the problem is broken down into functional units where

each unit performs its task and is self-sufficient. These units are then stitched together to

form the complete solution while in modular programming the functionality of a program

is separated into independent, interchangeable modules, such that each contains

everything necessary to execute only one aspect of the desired functionality.

4. Why is the Design phase important in Program Development Life Cycle?

-The requirements are specified in the form of a document. It is then converted into a

logical structure that needs to be implemented in a specific programming language.

ea
sy
tve
t.c
om

526

-The design phase is also helpful for specifying hardware & system requirements. It also

allows defining complete system architecture. The output is designed to document that

acts as an input for all the subsequent PDLC phases.

5. Which Five common errors that can occur in a program during program development

 Un initialization of variables.

 Reversing of an order of operands.

 Confusion of numbers and characters.

 Inverting of conditions eg jumping on zero instead of on not zero.

ea
sy
tve
t.c
om

527

6.2.3 Learning Outcome 3: Identify Program design

6.2.3.1 Introduction to the learning outcome

This learning outcome specifies the content of competencies required to design a

computer program. It entails the description of Program design, various approaches for

designing a program, and Program design tools.

6.2.3.2 Performance Standard

6.2.3.2.1 Description of Program design is done.

6.2.3.2.2 Program design approaches are identified.

6.2.3.2.3 Program design tools are identified.

6.2.3.3 Information Sheet

 Program design

The program design is the process that an organization uses to develop a program. It is most

often an iterative process involving research, consultation, initial design, testing, and redesign. A

program design is the plan of action that results from that process.

For further readings on Program design, click on the link below.

https://youtu.be/aXPIxUafbM8

 Program design approaches

 Top – Down

 Bottom-Up

 Data-Driven

ea
sy
tve
t.c
om

https://youtu.be/aXPIxUafbM8

528

Top-Down Design Model:

Top-down programming starts by implementing the most general modules and works

toward implementing those that provide specific functionality. In the top-down model, an

overview of the system is formulated without going into detail for any part of it. Each part of it

then refined into more details, defining it in yet more details until the entire specification is

detailed enough to validate the model. if we glance at a haul as a full, it’s going to appear not

possible as a result of it’s so complicated For example: Writing a University system program,

writing a word processor. Complicated issues may be resolved victimization high down style,

conjointly referred to as Stepwise refinement where,

1. We break the problem into parts,

2. Then break the parts into parts soon and now each of the parts will be easy to do.

 Bottom-Up Design Model:

In this design, individual parts of the system are specified in detail. The parts

are linked to form larger components, which are in turn linked until a complete system is

formed. Bottom-up programming implements the modules that provide specific

functionality first and then integrates them by implementing the more general modules

 Data-driven approach

When doing data-driven programming, one clearly distinguishes code from the data structures

on which it acts and designs both so that one can make changes to the logic of the program by

editing not the code but the data structure.

Data-driven programming is sometimes confused with object-orientation, another style in

which data organization is supposed to be central. There are at least two differences. One is that

in data-driven programming, the data is not merely the state of some object, but defines the

control flow of the program. Where the primary concern in OO is encapsulation, the primary

concern in data-driven programming is writing as little fixed code as possible. Unix has a

stronger tradition of data-driven programming than OO.

Programming data-driven style is also sometimes confused with writing state machines. It

is, in fact, possible to express the logic of a state machine as a table or data structure, but hand-

coded state machines are usually rigid blocks of code that are far harder to modify than a table.

An important rule when doing any kind of code generation or data-driven programming is this:

always push problems upstream. Don't hack the generated code or any intermediate

ea
sy
tve
t.c
om

529

representations by hand — instead, think of a way to improve or replace your translation tool.

Otherwise, you're likely to find that hand-patching bits that should have been generated correctly

by the machine will have turned into an infinite time sink.

Program Design Tools

Computers are problem-solving devices and it is an electronic programmable machine that

requires a set of instructions to perform tasks. To facilitate a computer to solve problems

effectively, clear and concise instructions must be provided to it. A programmer must provide

clear instruction to perform a task and he must have a plan to solve a particular problem using

programming tools like algorithm, flowchart, and pseudocode.

I. Algorithm

An algorithm is the stepwise logical instructions written in any human-understandable language

to solve a particular problem in a finite amount of time. It is written in simple English language.

Steps used to develop the algorithm are:

i. The problem has to be understood by the programmer.

ii. The expected output has to be identified.

iii. The logic that will produce the required output from the input has to be developed.

iv. The algorithm should be tested for accuracy for a given set of input data.

v. The steps are repeated till the desired result is produced.

Characteristics of an Algorithm

 All the instructions of the algorithm should be simple.

 The logic of each step must be clear.

 There should be a finite number of steps for solving problems.

Example of an algorithm

An algorithm for adding two-digit numbers is:

1. add the tens

ea
sy
tve
t.c
om

530

2. add the ones

3. add the numbers from steps 1 and 2

So to add 15 and 32 using that algorithm:

1. add 10 and 30 to get 40

2. add 5 and 2 to get 7

3. add 40 and 7 to get 47

II. Flowchart

The flowchart is a pictorial representation of a stepwise solution to a problem. It helps the

programmer in developing the program logic and serves as documentation for future reference.

It uses different boxes linked by the arrows. The process of drawing a flowchart is flowcharting.

Rules for developing a flowchart.

 Analyze the input, process, storage, and output information.

 Use standard symbols and arrowhead to the direction of flow of data and instructions.

 Use simple words that can be easily understood by other programmers.

 There should be a list of activities inside each symbol.

Table 42: flowchart symbols

Symbol Name Function

 Start/End An oval represents the start

or endpoint

Arrows

An arrow is a connector

that shows a relationship

between representative

shapes

Input/output

A parallelogram represents

input or output

ea
sy
tve
t.c
om

531

process

A rectangle represents a

process

Decision

A diamond indicates a

decision

Advantages

 The flowchart helps programmers to explain the logic of a program to others easily.

 The flowchart provides documentation support.

 A flowchart helps detect and remove bugs in a program in s systematic manner.

 With the reference of the Flowchart, the programmer can write a program and correspond

to the program.

Disadvantages

 Flowcharts are time-consuming and laborious to draw with proper symbols.

 The complicated logic of a program is not easy to represent

Figure 179 Flowchart example

ea
sy
tve
t.c
om

532

III. Pseudocode

A pseudocode is a method of documenting a program logic in which English-like statements are

used to describe the processing steps.

These are structured English-like phrases that indicate the program steps to be followed to solve

a given problem.

The term “Code” usually refers to a computer program. This implies that, some of the words

used in pseudocode may be drawn from a certain programming language and then mixed with

English to form structured statements that are easily understood by non-programmers, and also

make a lot of sense to programmers. However, pseudocodes are not executable by a computer.

Guidelines for designing good pseudocode.

1. The statements must be short, clear, and readable.

2. The statements must not have more than one meaning (i.e., should not be

ambiguous).

3. The pseudocode lines should be clearly outlined and indented.

4. Pseudocode must have a Begin and an end. i.e., pseudocode should show clearly

the start and stop of executable statements and the control structures.

5. The input, output & processing statements should be clearly stated using

keywords such as PRINT, READ, INPUT, etc

Decision Tables

ea
sy
tve
t.c
om

533

A Decision table represents conditions and the respective actions to be taken to address

them, in a structured tabular format.

It is a powerful tool to debug and prevent errors. It helps group similar information into a

single table and then by combining tables it delivers easy and convenient decision-

making.

 Creating a Decision Table

To create the decision table, the developer must follow the basic four steps:

 Identify all possible conditions to be addressed.

 Determine actions for all identified conditions.

 Create Maximum possible rules.

For your further readings on Decision tables,click on the link below.

https://youtu.be/A5-w3mof-3I

6.2.3.4 Learning Activities

Practical activity

Using your computer,prepare detailed document to be used by a newly employed person

in your organization capturing the following program design tools;

i. Pseudocodes.

ii. Flowcharts.

iii. Decision Tables.

iv. Decision Trees

6.2.3.5 Self-Assessment

1. .What is the difference between Top-Down and Bottom-Up program design approaches?

2. What is the difference between pseudocode and flowchart program design tools

3. What are some of the disadvantages of a flowchart?

4. What are the rules of developing a flowchart

5. Write a structured algorithm that would prompt the user to enter the Length and Width of a

rectangle, calculate the Area and Perimeter, then display the result.

ea
sy
tve
t.c
om

https://youtu.be/A5-w3mof-3I

534

6.2.3.6 Tools, Equipment, Supplies and Materials

 Flow charts

 Data flow diagram

 Decision table

 Decision tree

 Web Authoring tools

 Notepad

 Computer

 Software

 Digital instructional material including DVDs and CDs

6.2.3.7 References

Blignaut, A. S., Hinostroza, J. E., Els, C. J., & Brun, M. (2010). ICT in education policy

and practice in developing countries: South Africa and Chile compared through SITES

2006. Computers & Education, 55(4), 1552–1563.

Computer Hardware. (n.d.). Retrieved September 30, 2020, from

https://web.stanford.edu/class/cs101/hardware-

KIRIHATA, Y. (2009). Information processing apparatus and method, computer-

readable recording medium, and an external storage medium (United States Patent No.

US20090241114A1).

Lehmann, S., & Schweitzer, B. (2006). Apparatus, system, and method for creating

customized workflow documentation (United States Patent No. US20060059423A1).

Nagar, T. (2019, December 3). What is software and types of software with examples?

YourStory.Com. https://yourstory.com/mystory/what-software-types-examples

6.2.3.8 Model answers to self assessment

1. What is the difference between Top-Down and Bottom-Up program design

approaches?

- Top-down programming starts by implementing the most general modules and

works toward implementing those that provide specific functionality while in Bottom-

ea
sy
tve
t.c
om

535

up approach, individual parts of the system are specified in detail. The parts

are linked to form larger components, which are in turn linked until a complete

system is formed

2. Give the difference between pseudocode and flowchart program design tools

-pseudocode is a method of documenting a program logic in which English-like

statements are used to describe the processing steps while flowchart while is a

diagram that demonstrates the logical sequence of events that must be performed to

solve a problem.

3. What are some of the disadvantages of a flowchart?

 Flowcharts are complex, clumsy & become unclear, especially when the program

logic is complex.

 If changes are to be made, the flowchart may require complete re-drawing.

 No uniform practice is followed for drawing flowcharts as it is used as an aid to the

program.

 Sometimes, it becomes difficult to establish the link between various conditions, and

the actions to be taken upon a particular condition.

 Reproduction of flowcharts is usually a problem, since the flowchart symbols cannot be

typed.

4. State the rules of developing a flowchart

 A flowchart must have a Start & an end.

 It should have only one entry (starting point) & one exit point (i.e., ensure that the

flowchart has a logical start and finish).

 It should be clear, neat & easy to follow.

 The logical flow should be clearly shown using arrows.

 Use the correct symbol at each stage in the flowchart.

 Make comparison instructions simple, i.e., capable of YES/NO answers.

 Avoid overlapping the lines used to show the flow of logic as this can create confusion

in the flowchart.

 The flowchart should not be open to more than one interpretation.

 Where necessary, use Connectors to reduce the number of flow lines.

 Ensure that the flowchart is logically correct & complete.

ea
sy
tve
t.c
om

536

5.Write a structured algorithm that would prompt the user to enter the Length and

Width of a rectangle, calculate the Area and Perimeter, then display the result.

Step 1: Write down the Pseudocode.

START

PRINT “Enter Length and Width”

READ L, W

Area = L * W

Perimeter = 2 (L + W)

PRINT Area, Perimeter

STOP

Step 2: Design a flowchart for the program.

6.2.4 Learning Outcome 4: Identify Computer Programming Languages

6.2.4.1 Introduction to the learning outcome

This learning outcome specifies the content of competencies required to design a computer

program. It entails information on generations of programming languages, factors for

choosing a programming language and basic tools for program development.

6.2.4.2 Performance Standard

6.2.4.2.1 Generations of programming languages are Identified.

6.2.4.2.2 Factors for choosing a programming language are determined.

6.2.4.2.3 Basic tools for program development are identified.

ea
sy
tve
t.c
om

537

6.2.4.3 Information Sheet

 Programming Languages

A programming language is a set of words, symbols, and codes that enables a programmer to

communicate a solution algorithm to the computer. Just as humans understand a variety of

spoken languages (English, Spanish, French, and so on), computers recognize a variety of

programming languages.

Programming languages are classified into 2 major categories:

I. Low-level programming languages.

II. High-level programming languages.

Each programming language has its own grammatical (syntax) rules, which must be obeyed in

order to write valid programs, just as a natural language has its own rules for forming sentences.

I. Low-level languages

These are the basic programming languages, which can easily be understood by the computer

directly, or which require little effort to be translated into computer understandable form.

They include:

 Machine languages.

 Assembly languages.

Features of low-level languages

 They are machine hardware-oriented.

 They are not portable, i.e., a program written for one computer cannot be installed and

used on another computer of a different family.

 They use Mnemonic codes.

 They frequently use symbolic addresses.

ea
sy
tve
t.c
om

538

Machine languages (1st Generation computer languages)

-Machine language is written using machine codes (binary digits) that consist of 0’s & 1’s.

The computer can readily understand Machine code instructions without any translation.

A programmer is required to write his program in strings of 0’s & 1’s, calculate & allocate the

core memory locations for his data and/or instructions.

Assembly language (2nd Generation computer languages).

Assembly languages were developed to speed up programming (i.e., to overcome the difficulties

of understanding and using machine languages).

The vocabulary of Assembly languages is close to that of machine language, and its instructions

are symbolic representations of the machine language instructions.

 Assembly language programs are easier to understand, use & modify compared to

Machine language programs.

  Assembly language programs have fewer error chances.

To write program statements in Assembly language, the programmer uses a set of predefined

symbols (operation codes) called Mnemonic codes.

Advantages of Low-level languages

 The CPU can easily understand machine language without translation.

 They have closer control over the hardware, are highly efficient & allow direct control of

each operation.

 They are therefore suitable for writing Operating system software & Game programs,

which require fast & efficient use of the CPU time.

 The program instructions can be executed by the hardware (processor) much faster. This

is because; complex instructions are already broken down into smaller simpler ones.

 They require less memory space.

 They are stable, i.e., they do not crash once written.

ea
sy
tve
t.c
om

539

Disadvantages of Low-level languages

 Very few computer programs are written in a machine or Assembly language because of

the following reasons;

 Low-level languages are difficult to learn, understand, and write programs in them.

 Low-level language programs are difficult to debug (remove errors from).

 The programs are very long; hence, writing a program in a low-level language is usually

tedious & time-consuming.

 The programs are difficult to develop, maintain, and are also prone to errors (i.e., it

requires highly trained experts to develop and maintain the programs).

 Low-level languages are machine-dependent (specific), hence non-portable. This implies

that they are designed for a specific machine & specific processor, and therefore, cannot

be transferred between machines with different hardware specifications.

II. High-level programming languages

High-level languages were developed to solve (overcome) the problems encountered in

low-level programming languages.

The grammar of High-level languages is very close to the vocabulary of the natural

languages used by human beings. Hence; they can be read and understood easily even by

people who are not experts in programming.

Most high-level languages are general-purpose & problem-oriented. They allow the

programmer to concentrate on the functional details of a program rather than the details

of the hardware on which the program will run.

High-level language programs are machine-independent, (i.e., they do not depend on a

particular machine, and can run in any family of computers provided the relevant

translator software is installed).

Advantages of High-Level Languages:

ea
sy
tve
t.c
om

540

 It is close to the human being

 It is easy to understand

 It consists of an English language like structure

 It does not depend upon the machine

 It is easy to modify

 The programs written in high-level languages is called source code Example of high-

level languages are BASIC, PASCAL, C/C++, etc.

Disadvantages of High-level languages.

 High-level languages are not machine-oriented; hence, they do not use the CPU

and

hardware facilities efficiently.

 The languages are machine-independent and cannot be used in programming the

hardware directly.

 Each high-level language statement converts into several machine code

instructions. This

means that, they use more storage space, and it also takes more time to run the

program.

 Their program statements are too general; hence, they execute slowly than their

machine code program equivalents.

 They have to be interpreted or compiled to machine-readable form before the

computer can execute them.

 The languages cannot be used on very small computers.

 The source program written in a high-level language needs a Compiler, which is

loaded into the main memory of the computer, and thus occupies much of

memory space. This greatly reduces the memory available for a source program.

III. Fourth-generation languages (4gl’s).

4GLs make programming even easier than the 3GLs because; they present the

ea
sy
tve
t.c
om

541

programmer with more programming tools, such as command buttons, forms, text boxes,

etc. The programmer simply selects graphical objects called controls on the screen and

then uses them to create designs on a form by dragging a mouse pointer.

The languages also use application generators (which are in the background) to generate

the necessary program codes; hence, the programmer is freed from the tedious work of

writing the code.

-4GLs are used to enquire & access the data stored in database systems; hence, they are

described as the Query Languages such as Structured Query Languages (SQL), Report

Generators, Application Generators, Decision-support languages & Graphics languages

Examples of 4GLs are:

 Visual Basic

 Delphi Pascal

 Visual COBOL (Object COBOL)

 Access Basic

Advantages of fourth-generation languages.

 They are user-based, and therefore, easy to learn & understand.

 Their grammar is very close to the natural English language.

 They use menus & prompts to guide a non-specialist to retrieve data easily.

 Very little training is required to develop & use 4GL programs.

 They provide features for the formatting of input, processing, & instant reporting.

IV. Object-oriented programming Language

Object-Oriented Programming uses objects. An Object is a representation of a

software entity.

such as a user-defined window or variable.

In OOP the data & procedures that operate on data are combined into one object.

Several objects can be linked together to form a complete program.

Each object has specific data values that are unique to it called state & a set of the

things it can accomplish called functions or behavior. Therefore, programs send

ea
sy
tve
t.c
om

542

messages to an object to perform a procedure that is already embedded in it. The

process of having data & functions that operate on the data within an object is

called encapsulation.

OOP is greatly applied in the development of GUI operating systems &

application programs.

OOP enables rapid program development. Every object has properties such as

colour, size, data source, etc, which can be set easily without much effort.

Besides, every object has events associated with it that can be used to trigger

certain actions, e.g. remove the window from the screen by clicking the ‘Close’

button.

Examples of Object-oriented programming languages are: -

 Simula

 C++

 Smalltalk

 Java

 Python

Click on the link below for further reading on Object-Oriented Programming.

https://youtu.be/SiBw7os-_zI

Visual Basic programming Language

Visual Basic is a programming language and development environment created by

Microsoft. It is an extension of the BASIC programming language that combines BASIC

functions and commands with visual controls. Visual Basic provides a graphical user

interface GUI that allows the developer to drag and drop objects into the program as well as

manually write program code.

- Visual Basic, also referred to as "VB," is designed to make software development easy and

efficient, while still being powerful enough to create advanced programs. For example, the

Visual Basic language is designed to be "human-readable," which means the source code can

be understood without requiring lots of comments. The Visual Basic program also includes

features like "IntelliSense" and "Code Snippets," which automatically generate code for

visual objects added by the programmer. Another feature, called "AutoCorrect," can debug

ea
sy
tve
t.c
om

https://youtu.be/SiBw7os-_zI

543

the code while the program is running.

-Programs created with Visual Basic can be designed to run on Windows, on the Web, within

Office applications, or on mobile devices. Visual Studio, the most comprehensive VB

development environment, or IDE can be used to create programs for all these mediums.

Visual Studio .NET provides development tools to create programs based on the .NET

framework, such as ASP.NET applications, which are often deployed on the Web.

 Factors to consider when choosing a programming language.

The following factors should be considered when choosing a Programming language to use

in solving a problem:

i. The availability of the relevant translator. Translators help in converting the Source

codes (program statements written in any of the computer programming languages) to

their Object codes (computer language equivalents).

ii. Ease of learning and use. The programming language chosen should be the one that is

easy for users to learn and use

iii. Purpose of the program, i.e., application areas such as education, business, science,

etc.

iv. Execution time: - Applications that require a quick response are best programmed in

machine code or assembly language. High-level languages are not suitable for such an

application because they take longer to be translated & executed.

v. Development time: - Development time is the time a programmer takes to write and run

a program. High-level languages are easy to read, understand and develop; hence, they

require less development time. Machine code & Assembly languages are relatively

difficult to read, understand and develop; hence, they are time-consuming.

vi. Popularity: - The language selected should be suitable and/or successful in the market

concerning the problems to be solved.

vii. Documentation: - It should have accompanying documentation (descriptions) on how

to use the language or maintain the programs written in the language.

viii. Maintenance: - Programs are developed to solve specific problems, and the problems

keep on changing; hence, the programs are also changed to perform the new functions.

Program maintenance is the activity of incorporating more routines into the program,

ea
sy
tve
t.c
om

544

modifying the existing routines, or removing the obsolete routines to make the program

adapt to a functionally enhanced environment. The maintenance is made easier if the

language used is easy to read and understand.

 Program development tools

some of the program development tools include.

 Pseudocode

 flow charts

 Data flow diagrams

Pseudocodes.

A pseudocode is a method of documenting a program logic in which English-like

statements are used to describe the processing steps.

These are structured English-like phrases that indicate the program steps to be followed to

solve a given problem.

The term “Code” usually refers to a computer program. This implies that some of the

words used in pseudocode may be drawn from a certain programming language and then

mixed with English to form structured statements that are easily understood by non-

programmers, and also make a lot of sense to programmers. However, pseudocodes are

not executable by a computer.

Guidelines for designing good pseudocode.

1. The statements must be short, clear, and readable.

2. The statements must not have more than one meaning (i.e., should not be ambiguous).

3. The pseudocode lines should be clearly outlined and indented.

4. A pseudocode must have a Begin and an end.

i.e., pseudocode should show clearly the start and stop of executable statements and the

control structures.

5. The input, output & processing statements should be clearly stated using keywords such

as PRINT, READ, INPUT, etc.

Flowcharts.

ea
sy
tve
t.c
om

545

 A Flowchart is a diagram that demonstrates the logical sequence of events that must be

performed to solve a problem.

It is a diagrammatic or pictorial representation of a program’s algorithm.

Types of Flowcharts.

There are 2 common types of Flowcharts:

 1). System flowchart.

A System flowchart is a graphical model that illustrates each basic step of a data

processing system.

-It illustrates (in summary) the sequence of events in a system, showing the

department or function responsible for each event.

 2). Program flowchart.

This is a diagram that describes, in sequence, all the operations required to process

data in a computer program.

-A program flowchart graphically represents the types of instructions contained in a

computer program as well as their sequence & logic.

Guidelines for drawing a program flowchart.

 A flowchart must have a Start & an end.

 It should have only one entry (starting point) & one exit point (i.e., ensure that the

flowchart has a logical start and finish).

 It should be clear, neat & easy to follow.

 The logical flow should be clearly shown using arrows.

 Use the correct symbol at each stage in the flowchart.

 Make comparison instructions simple, i.e., capable of YES/NO answers.

 Avoid overlapping the lines used to show the flow of logic as this can create confusion

in the flowchart.

 The flowchart should not be open to more than one interpretation.

 Where necessary, use Connectors to reduce the number of flow lines.

 . Ensure that the flowchart is logically correct & complete.

ea
sy
tve
t.c
om

546

Data flow diagrams

A data flow diagram shows the way information flows through a process or system. It

includes data inputs and outputs, data stores, and the various subprocesses the data

Figure 180:Example of a flow chart

ea
sy
tve
t.c
om

547

moves through. DFDs are built using standardized symbols and notation to describe

various entities and their relationships.

Data flow diagrams visually represent systems and processes that would be hard to

describe in a chunk of text. You can use these diagrams to map out an existing system

and make it better or to plan out a new system for implementation. Visualizing each

element makes it easy to identify inefficiencies and produce the best possible system.

6.2.4.4 Learning Activities

 Practical activity

 In your institution computer laboratory, perform the following;

i. You need to calculate the area of the rectangle using its length and width. Draw a

flowchart and write pseudocode that will accept the length and width and

calculate and print the area of the rectangle. (area = length * width)

ii. Net salaries of employees are paid after the calculation of their deductions and

allowances. The following rates are used for calculating these allowances and

deductions. Allowances Deductions HRA 15% of Basic SS 7% of Basic DA

10% of Basic Levy 1% of Basic EA 5% of Basic TA 12% of Basic To calculate

the Gross salary the following formulas are used: Gross salary = Basic salary+

allowances Net salary = Gross salary - deductions Write pseudocode that will

prompt the user to enter the name and basic salary of an employee and output

their name, basic salary, allowances, deductions, gross salary and net salary with

appropriate labels.

6.2.4.5 Self-Assessment

You are provided with the following questions for self -assessment, attempt them

and check your responses.

a. What is a Programming language?

b. What is meant by ‘Machine language’?

c. Show the difference between Machine language and Assembly language.

ea
sy
tve
t.c
om

548

d. Give two advantages & three disadvantages of Machine language

programming.

e. Give the features/characteristics of high-level programming languages.

f. List 8 factors that need to be considered when selecting a programming

language.

g. Write pseudocode that will accept 25 integers and displays the number of

positive and negative numbers.

h. Write a pseudocode algorithm that will create a conversion table to

convert degrees Celsius to degree Fahrenheit. Prompt the user to enter the

temperature in degree Celsius and display the temperature in Fahrenheit.

(Fahrenheit = 32+ (9*Celcius/5)

6.2.4.6 Tools, Equipment, Supplies, and Materials

 Flow charts

 Data flow diagram

 Decision table

 Decision tree

 Web Authoring tools

 Notepad

 Computer

 Software

 Digital instructional material including DVDs and CDs

6.2.4.7 References

Blignaut, A. S., Hinostroza, J. E., Els, C. J., & Brun, M. (2010). ICT in education policy

and practice in developing countries: South Africa and Chile compared through SITES

2006. Computers & Education, 55(4), 1552–1563.

Computer Hardware. (n.d.). Retrieved September 30, 2020, from

https://web.stanford.edu/class/cs101/hardware-.

KIRIHATA, Y. (2009). Information processing apparatus and method, computer-

readable recording medium, and an external storage medium (United States Patent No.

US20090241114A1).

ea
sy
tve
t.c
om

549

Lehmann, S., & Schweitzer, B. (2006). Apparatus, system, and method for creating

customized workflow documentation (United States Patent No. US20060059423A1).

Nagar, T. (2019, December 3). What is software and types of software with examples?

YourStory.Com. https://yourstory.com/mystory/what-software-types-examples

6.2.4.8 Model answers to self-assessment

a. What is a Programming language?

- A programming language is a set of words, symbols, and codes that enables a

programmer to communicate a solution algorithm to the computer

b. What is meant by ‘Machine language’?

- The machine-level language is a language that consists of a set of instructions

that are in the binary form 0 or 1. As we know that computers can understand

only machine instructions, which are in binary digits, i.e., 0 and 1, so the

instructions given to the computer can be only in binary codes.

c. Show the difference between Machine language and Assembly language.

Table 43 Difference between Machine and Assembly Language

Machine-level language Assembly language

The machine-level language comes at the

lowest level in the hierarchy, so it has zero

abstraction level from the hardware.

The assembly language comes above the

machine language means that it has less

abstraction level from the hardware.

It cannot be easily understood by humans. It is easy to read, write, and maintain.

The machine-level language is written in

binary digits, i.e., 0 and 1.

The assembly language is written in simple

English language, so it is easily

understandable by the users.

It does not require any translator as the

machine code is directly executed by the

computer.

In assembly language, the assembler is used

to convert the assembly code into machine

code.

It is a first-generation programming

language.

It is a second-generation programming

language.

ea
sy
tve
t.c
om

550

d. What are the features/characteristics of high-level programming languages.

 They contain statements that have an extensive vocabulary of words,

symbols, sentences & mathematical expressions, which are very similar to

the normal English language.

 Allow modularization (use of sub-routines).

 They are ‘user-friendly’ and problem-oriented rather than machine-based.

This implies that, during a programming session, the programmer

concentrates on problem-solving rather than how a machine operates.

 They require one to obey a set of rules when writing the program.

 Programs written in high-level languages are shorter than their low-level

language equivalents since one statement translates into several machine

code instructions.

 The programs are portable between different computers.

e. List 8 factors that need to be considered when selecting a programming language.

 The availability of the relevant translator. Translators help in converting the

Source codes (program statements written in any of the computer

programming languages) to their Object codes (computer language

equivalents).

 Ease of learning and use. The programming language chosen should be the

one that is easy for users to learn and use

 Purpose of the program, i.e., application areas such as education, business,

science, etc.

 Execution time: - Applications that require a quick response are best

programmed in machine code or assembly language. High-level languages are

not suitable for such an application because they take longer to be translated

& executed.

 Development time: - Development time is the time a programmer takes to

write and run a program. High-level languages are easy to read, understand

ea
sy
tve
t.c
om

551

and develop; hence, they require less development time. Machine code &

Assembly languages are relatively difficult to read, understand and develop;

hence, they are time-consuming.

 Popularity: - The language selected should be suitable and/or successful in

the market concerning the problems to be solved.

 Documentation: - It should have accompanying documentation (descriptions)

on how to use the language or maintain the programs written in the language.

 Maintenance: - Program maintenance is the activity of incorporating more

routines onto the program, modifying the existing routines, or removing the

obsolete routines to make the program adapt to a functionally enhanced

environment. The maintenance is made easier if the language used is easy to

read and understand.

f. Write pseudocode that will accept 25 integers and displays the number of positive and

negative numbers

 Step 1: start

Step 2: postcount =0, negcount =0

Step 3: for i =1 to 25

Step 3: read num

Step 4: if num>0 then

poscount = poscount +1

else

negcount = negcount +1

endif

Step 5: end for

Step 6: write poscount,negcount

g. Write a pseudocode algorithm that will create a conversion table to convert degrees

Celsius to degree Fahrenheit. Prompt the user to enter the temperature in degree Celsius

and display the temperature in Fahrenheit. (Fahrenheit = 32+ (9*Celcius/5)

 solution

Step 1: start

ea
sy
tve
t.c
om

552

Step 2: write “Enter the temperature in degrees Celcius.”

Step 3: read Celsius

Step 4: Fahrenheit =32 + (9* celcius/5)

Step 5: write “The temperature in Fahrenheit is:”

Step 6: write Fahrenheit

Step 7: stop

ea
sy
tve
t.c
om

553

6.2.5 Learning Outcome 5: Perform Basic Structured programming using C language.

6.2.5.1 Introduction to the learning outcome

This learning outcome specifies the content of competencies required to design a

computer program. It entails information fundamentals of C programming, Control structures in

C programming, Subprograms of C language, C language concepts, C programming

environment, description of sub programming, C program format.

6.2.5.2 Performance Standard

6.2.5.2.1 Fundamentals of C programming are identified.

6.2.5.2.2 Control structures in C programming are identified.

6.2.5.2.3 Subprograms of C language are explained.

6.2.5.2.4 C language concepts are identified.

6.2.5.2.5 C programming environment is identified.

6.2.5.2.6 Description of sub programming

6.2.5.2.7 C program format is explained.

6.2.5.3 Information Sheet

 C Programming Language

Overview of C programming language

C is a structured programming language developed by Dennis Ritchie in 1973 at Bell

Laboratories. It is one of the most popular computer languages today because of its structure,

high-level abstraction, machine-independent feature, etc.

History of C language: -

C language has evolved from three different structured language ALGOL, BCPL, and B

Language. It uses many concepts from these languages while introduced many new concepts

such as datatypes, struct, pointer, etc. In 1988, the language was formalized by the American

ea
sy
tve
t.c
om

554

National Standard Institute (ANSI). In 1990, a version of the C language was approved by

the International Standard Organisation (ISO) and that version of C is also referred to as

C89.

The idea behind creating C language was to create an easy language that requires a simple

compiler and enables programmers to efficiently interact with the machine/system, just like

machine instructions.

Characteristics of C language

 C is a powerful, flexible language that provides fast program execution.

 C is a Procedural Language i.e. the programmer is required to provide step-by-step

instructions for the CPU (central processing unit).

 The success of C is due to its simplicity, efficiency, flexibility and

small memory requirements.

 Low Level features: C's power and fast program execution come from its ability to

access low-level commands, similar to assembly language, but with high-level syntax.

 Portability: C programs are portable i.e. they can run on any compiler with little or no

modification. Compiler and Preprocessor make it possible for the C program to run it on

different PC.

 Bit Manipulation: C Programs can be manipulated using bits and it provides wide

variety of bit manipulation operators

 Modular Programming: It is a software design technique that increases the extent to

which software is composed of separate parts, called modules. A C-program consists of

different modules that are integrated to form a complete program.

ea
sy
tve
t.c
om

555

 Efficient Usage of Pointers: C supports the efficient use of pointers and pointers have

direct memory access.

Structure of a C program

 Preprocessor directives

Global declarations

 Main()

 {

 Local declaration Statements

}

 Function 1()

{

Local declaration statements

}

Function n()

{

Local declaration statements

}

Local declaration statements

Preprocessor directives

 Before a C program is compiled in a compiler, source code is processed by a program called

pre-processor. This process is called pre-processing.

 Commands used in pre-processor are called preprocessor directives and they begin with the

“#” symbol.

Below is the list of preprocessor directives that the C programming language offers.

ea
sy
tve
t.c
om

556

Preprocessor

Syntax/Description

MACRO

Syntax: #define

This macro defines constant value and can be any of the basic data types.

HEADER FILE

INCLUSION

Syntax: #include <file_name>

The source code of the file “file_name” is included in the main program

at the specified place.

CONDITIONAL

COMPILATION

Syntax: #ifdef, #endif, #if, #else, #ifndef

Set of commands are included or excluded in the source program before

compilation concerning the condition.

OTHER DIRECTIVES Syntax: #undef, #pragma

#undef is used to undefine a defined macro variable. #Pragma is used to

call a function before and after the main function in a C program.

Example

#include<stdio.h>

#include<conio.h>

int add (int a, int b);

void main()

{

 ...…...........

}

ea
sy
tve
t.c
om

557

i. #include<file>variant used for system header files.(searches for a file named file in a list of

directives.

ii. #include –used to paste code of a given file into the current one.

iii. #define macros –a segment of code used to replace the value of a macro.

iv. #undef –used to cancel the definition of a macro.

v. #ifndef-checks if a macro is not defined.

vi. #define const –used to define a constant

vii. #include<math.h> -a preprocessor directive used to add math libraries to a program.

Input and output statements

Input

-The process of giving something to the computer is known as input. Input is mostly given

through the keyboard. Input functions are:

 Scanf ()

 Gets ()

 Getch ()

 Getche ()

Output

The process of getting something from the computer is known as output. The output is mostly

displayed on monitors. Output functions are:

 print ()

 puts()

The functions used for input and output are stored in the header file stdio. h. If the programmer

uses any of the above function it is necessary to include the header file.

C keywords

They are reserved words with predefine meaning to the compiler. They include:

ea
sy
tve
t.c
om

558

Table 44 C keywords

auto double int struct

break else long switch

case enum register typedef

const extern return union

char float short unsigned

continue for signed volatile

default goto size void

do if static while

Variables

 When we want to store any information(data) on our computer/laptop, we store it in the

computer's memory space.

 Instead of remembering the complex address of that memory space where we have stored our

data, our operating system provides us with an option to create folders, name them, so that it

becomes easier for us to find it and access it.

 Similarly, in C language, when we want to use some data value in our program, we can store

it in a memory space and name the memory space so that it becomes easier to access it.

 The naming of an address is known as a variable. Variable is the name of a memory

location.

 Unlike constant, variables are changeable, we can change the value of a variable during

execution of a program. A programmer can choose a meaningful variable name.

ea
sy
tve
t.c
om

559

 Example: Height, age, are the meaningful variables that represent the purpose it is being used

for. Height variable can be used to store a height value. Age variable can be used to store the

age of a person

Rules to name a Variable

1. Variable name must not start with a digit.

2. The variable name can consist of alphabets, digits, and special symbols like underscore _.

3. Blank or spaces are not allowed in a variable name.

4. Keywords are not allowed as a variable name.

5. Upper- and lower-case names are treated as different, as C is case-sensitive, so it is

suggested to keep the variable names in lower case

Datatype of Variable

Data types specify how we enter data into our programs and what type of data we enter. C

language has some predefined set of data types to handle various kinds of data that we can use in

our program. These data types have different storage capacities.

There are four data types in the C language. They are, It can be:

Table 45 C datatypes

Types Data Types

Basic data types int, char, float, double

Enumeration data type enum

Derived data type
pointer, array, structure, union

Void data type void

Integer data type:

ea
sy
tve
t.c
om

560

 Integer data type allows a variable to store numeric values.

 The “int” keyword is used to refer to an integer data type.

 The storage size of the int data type is 2 or 4 or 8 bytes.

 It varies depending upon the processor in the CPU that we use. If we are using a 16-bit

processor, 2 bytes (16 bit) of memory will be allocated for the int data type.

 Likewise, 4 byte (32 bit) of memory for 32 bit processor and 8 byte (64 bit) of memory

for 64 bit processor is allocated for int datatype.

 int (2 byte) can store values from -32,768 to +32,767

 int (4 byte) can store values from -2,147,483,648 to +2,147,483,647.

If you want to use the integer value that crosses the above limit, you can go for “long int” and

“long int” for which the limits are very high.

Character data type:

Character data type allows a variable to store only one character.

Storage size of character data type is 1. We can store only one character using a character data

type.

“char” keyword is used to refer to a character data type.

For example, ‘A’ can be stored using char datatype. You can’t store more than one character

using a char data type.

Please refer C – Strings topic to know how to store more than one characters in a variable.

Floating point data type:

Floating point data type consists of 2 types. They are,

1. float

2. double

Float:

 Float data type allows a variable to store decimal values.

ea
sy
tve
t.c
om

http://fresh2refresh.com/c/c-strings/

561

 Storage size of float data type is 4. This also varies depending upon the processor in the CPU

as “int” data type.

 We can use up to 6 digits after decimal using float data type.

 For example, 10.456789 can be stored in a variable using a float data type.

Double:

 A double data type is also the same as float data type which allows up to 10 digits after the

decimal.

 The range for double datatype is from 1E–37 to 1E+37.

C operators and expressions

-An operator is used to describe an operation applied to one or several objects.

i. Arithmetic Operators

ii. Increment and Decrement Operators

iii. Assignment Operators

iv. Relational Operators

v. Logical Operators

vi. Conditional operators

vii. Bitwise Operators

viii. Special Operators

Arithmetic Operators

Operator Meaning of Operator

+ Addition or unary plus

- Subtraction or unary minus

* Multiplication

/ Division

ea
sy
tve
t.c
om

562

 % Remainder after division (modulo division)

Increment and Decrement Operators:

Operator Meaning of Operator

++ Increment operator (unary)

 a++; //post increment

 ++ a; //pre increment

-- Decrement operator (unary)

 a--; //post decrement

 --a; //pre decrement

Assignment Operators:

There are two types of assignment operators.

 1. Simple Assignment

2. Compound Assignment

Operator Meaning of Operator

Simple Assignment

= Assignment Operator

e.g. x=5

5 is assigned to x

Compound Assignment

+= a += b is equivalent to a = a + b

-= a -= b is equivalent to a = a - b

ea
sy
tve
t.c
om

563

*= a *= b is equivalent to a = a * b

/= a /= b is equivalent to a = a / b

%= a %= b is equivalent to a = a % b

&= a &= b is equivalent to a = a & b

|= a |= b is equivalent to a = a | b

^= a ^= b is equivalent to a = a ^ b

<<= a <<= b is equivalent to a = a << b

>>= a >>= b is equivalent to a = a >> b

Relational Operators:

Relational Operators are used to check the relationship between two operands. If

the relation is

true, it returns value 1 and if the relation is false, it returns value 0. Relational

operators are used

in decision making and loops in C programming.

Operator Meaning of Operator

== Equal to

e.g. 5 == 3 returns false or 0

> Greater than

e.g. 5 > 3 returns true or 1

< Less than

e.g. 5 < 3 returns fase or 0

!= Not equal to

ea
sy
tve
t.c
om

564

5 != 3 returns true or 1

>= Greater than or equal to

e.g. 5 >= 3 returns true or 1

<= Less than or equal to

e.g. 5 <= 3 returns false or 0

Logical Operators:

Logical operators are used to combining expressions containing relation

operators. In C, there are 3

logical operators:

Operator Meaning of Operator

&& Logical AND

e.g. if c=5 and d=2 then

((c == 5) && (d > 5)) returns false or

0

|| Logical OR

e.g. if c=5 and d=2 then

((c == 5) || (d > 5)) returns true or 1

! Logical NOT

e.g. if c=5 then

!(c == 5) returns false or 0

Conditional Operator:

ea
sy
tve
t.c
om

565

The conditional operator takes three operands and consists of two symbols? and.

Conditional

operators are used for decision making in C.

For example: c = (c > 0) ? 10 : 20;

If c is greater than 0, the value of c will be 10 but, if c is less than 0, the value of c

will be 20.

Bitwise Operators:

A bitwise operator works on each bit of data.

Operator Meaning of Operator

& Bitwise AND

| Bitwise OR

^ Bitwise Exclusive OR

<< Shift Left

>> Shift Right

~ Bitwise Complement (One’s Complement)

C expressions

ea
sy
tve
t.c
om

566

An expression is a formula in which operands are linked to each other by the use of

operators to compute a value. An operand can be a function reference, a variable, an array

element, or a constant.

Figure 181: C expressions

Types of C Expressions

Arithmetic Expressions

An arithmetic expression is an expression that consists of operands and arithmetic

operators. An arithmetic expression computes a value of type int, float or double.

When an expression contains only integral operands, then it is known as pure integer

expression when it contains only real operands, it is known as pure real expression, and

when it contains both integral and real operands, it is known as mixed-mode expression

Example

6*2/ (2+1 * 2/3 + 6) + 8 * (8/4)

Evaluation of

expression

Description of each operation

6*2/(2+1 * 2/3 +6)

+8 * (8/4)

An expression is given.

ea
sy
tve
t.c
om

567

6*2/(2+2/3 + 6) + 8

* (8/4)

2 is multiplied by 1, giving value 2.

6*2/(2+0+6) + 8 *

(8/4)

2 is divided by 3, giving value 0.

6*2/ 8+ 8 * (8/4) 2 is added to 6, giving value 8.

6*2/8 + 8 * 2 8 is divided by 4, giving value 2.

12/8 +8 * 2 6 is multiplied by 2, giving the value 12.

1 + 8 * 2 12 is divided by 8, giving value 1.

Relational Expressions

o A relational expression is an expression used to compare two operands.

o It is a condition that is used to decide whether the action should be taken or not.

o In relational expressions, a numeric value cannot be compared with the string value.

o The result of the relational expression can be either zero or non-zero value. Here, the zero

value is equivalent to a false, and the non-zero value is equivalent to a true.

Relational

Expression

Description

x%2 = = 0 This condition is used to check whether the x is an even number or not. The

relational expression results in value 1 if x is an even number otherwise results in

value 0.

a!=b It is used to check whether a is not equal to b. This relational expression results in

1 if a is not equal to b otherwise 0.

a+b = = x+y It is used to check whether the expression "a+b" is equal to the expression "x+y".

a>=9 It is used to check whether the value of a is greater than or equal to 9.

Logical Expressions

o A logical expression is an expression that computes either zero or non-zero value.

o It is a complex test condition to take a decision.

ea
sy
tve
t.c
om

568

Let's see some examples of logical expressions.

Logical

Expressions

Description

(x > 4)

&& (x < 6

)

It is a test condition to check whether the x is greater than 4 and x is less

than 6. The result of the condition is true only when both conditions are

true.

x > 10 || y

<11

It is a test condition used to check whether x is greater than 10 or y is less

than 11. The result of the test condition is true if either of the conditions

holds value.

! (x > 10)

&& (y = =

2)

It is a test condition used to check whether x is not greater than 10 and y is

equal to 2. The result of the condition is true if both conditions are true.

Conditional Expressions

o A conditional expression is an expression that returns 1 if the condition is true otherwise 0.

o A conditional operator is also known as a ternary operator.

The Syntax of Conditional operator

Suppose exp1, exp2 and exp3 are three expressions.

exp1 ? exp2 : ex

Control structures

Control structures are blocks of statements that determine how program statements are to be

executed.

ea
sy
tve
t.c
om

569

-Control statements deal with situations where processes are to be repeated several numbers of

times or where decisions have to be made.

There are 3 control structures used in most of the structured programming languages:

i. Sequence.

ii. Selection.

iii. Iteration (looping).

i. Sequence control structures

-In Sequence program execution, the program statements are executed one after another in the

order in which they are written. In other words, the computer reads instructions from a program

file line-by-line starting from the first line sequentially towards the end of the file.

Figure 182: Sequence control structure

ii. selection control structures

-Selection involves choosing a specified group of instructions/statements for execution.

In Selection control, a logical test is carried out, and one or more statements are usually

selected.

Figure 183: Selection control structure

ea
sy
tve
t.c
om

570

There are 4 types of selection control structures used in most high-level programming.

languages:

a. IF – THEN

b. IF – THEN – ELSE

c. Nested IF

d. CASE – OF

IF – THEN

IF – THEN structure is used if only one option is available, i.e., it is used to perform a

certain action if the condition is true but does nothing if the condition is false.

The general format of the IF-THEN structure is:

IF < Condition > THEN

Program statement to be executed if the condition is true;

ENDIF

If the condition is TRUE, the program executes the part following the keyword ‘THEN’.

If the condition is FALSE, the statement part of the structure is ignored, and the program

continues.

with the statements below the ENDIF.

 Example

In a school, the administration may decide to reward only those students who attain a

mean mark of 80% and above.

Pseudocode

 IF Mark > 80 THEN

Yes Print “ Give reward”

ENDIF

IF – THEN -ELSE

The IF-THEN-ELSE structure is suitable when there are 2 available options to select

from.

ea
sy
tve
t.c
om

571

The general format of the IF-THEN-ELSE structure is:

IF < Condition > THEN

Statement 1; (called the THEN part)

ELSE

Statement 2; (called the ELSE part)

ENDIF (indicates the end of the control structure)

NESTED IF

-Nested IF structure is used where 2 or more options have to be considered to make a

selection.

The general format of the Nested IF structure is:

IF < Condition 1 > THEN

 Statement 1

ELSE

IF < Condition 2 > THEN

 Statement 2

ELSE

IF < Condition 3 > THEN

 Statement 3

ELSE

 Statement 4;

 ENDIF

 ENDIF

ENDIF

The CASE structures

-CASE-OF allows a particular group of statements to be chosen from several available

groups.

-It is therefore used where the response to a question involves more than two

choices/alternatives.

ea
sy
tve
t.c
om

572

The general format of the CASE structure is:

 CASE Expression OF

 Label 1: statement 1

 Label 2: statement 2

 Label 3: statement 3

 .

 .

 Label n: statement n

ELSE

 Statement m

ENDCASE

iii. Iteration/Loop structures

 -Looping refers to the repeated execution of the same sequence of statements to process

 individual data.

-The program is designed to execute the same group of statements repeatedly for a

specified number of times or until a certain condition is met/satisfied.

The loop structure consists of 2 parts:

1). Loop body, which represents the statements to be repeated.

2). Loop control, which specifies the number of times the loop body is to be repeated.

Consider following the link below for further reading on Loop Structures

https://youtu.be/qUPXsPtWGoY

Subprograms

-Also called sub procedures – a group of statements that together perform a given task. They are:

ea
sy
tve
t.c
om

https://youtu.be/qUPXsPtWGoY

573

Procedures and functions

Scope of variables –coverage /extent of a variable reference in a program.

Variable scoping can be;

 Global variables

 Local variables

Parameter passing –the parameters can be passed in two ways

 Call by value

 Call by reference

C program format

Structure of c language

The structure of the C program is as follows:

 # include<stdio.h>

 void main (void)

 {

 print (“ ”);

 getch();

 }

#preprocessor

This symbol directs the compiler that content on this line is already processed.

include

This directive indicates that the standard library object file has to be attached to the program.

<stdio.h>

This is a header file which contains instruction for the predefined functions of the language.

ea
sy
tve
t.c
om

574

Standard input/output header file contains the instruction for getting and displaying data on a

screen.

Types of Header files:

Header file in angle brackets is language define (<header file>) and header file in double-quotes

is user define ("header file").

Main Function

This directs the compiler to start the compiling from the point.

Void main (void)

The first void show we are not getting any value from the program. The second void in a

bracket called argument or parameter shows we are not giving or passing any value to the

program.

{} Delimiters

The body of the program is written in between these delimiters.

Opening brace "{" shows the start of the program.

Closing brace "}" shows the end of the program.

Body of program

Body of the program consists of statements or a set of statements. Each statement ends

with a semicolon (;) known as terminator which tells the compiler where one statement is

ended.

Printf(" ")

Printf() function is used to display content written in double-quotes on screen.

ea
sy
tve
t.c
om

575

6.2.5.4 Learning Activities

Practical activity

Using your personal computer, perform the following activity

A class trainer designed a simple program that would help her do the following:

(a) Enter marks obtained in 4 subjects and calculate the average marks for each student.

(b) Depending on the Average mark obtained, the program should assign grade as follows:

Between 80 and 100 – A

Between 70 and 79 – B

Between 60 and 69 – C

Between 50 and 59 – D

Below 50 – E

(c) The program should then display the Average grade.

Using pseudocode and a flowchart, write an algorithm that shows the design of the program.

6.2.5.6 Self-Assessment

You are provided with the following questions for self -assessment, attempt them and

check your responses

1. What is C programming language?

2. Give five characteristics of C Programming Language

3. What do the following fundamentals mean in C programming language? Give two

examples for each

a) C keywords

b) Variables

c) C operators

d) C expressions

4. Give the difference between Sequence and Selection control structures in C

programming

ea
sy
tve
t.c
om

576

5. A lady deposits 2,000 shillings in a Microfinance company at an interest rate

of 20% per annum. At the end of each year, the interest earned is added to the

deposit and the new amount becomes the deposit for that year.

Write pseudocode for a program that would track the growth of the deposits

over seven years.

6.2.5.7 Tools, Equipment, Supplies, and Materials

 Flow charts

 Data flow diagram

 Decision table

 Decision tree

 Web Authoring tools

 Notepad

 Computer

 compiler

 Digital instructional material including DVDs and CDs

6.2.5.7 References

Blignaut, A. S., Hinostroza, J. E., Els, C. J., & Brun, M. (2010). ICT in education policy and

practice in developing countries: South Africa and Chile compared through SITES 2006.

Computers & Education, 55(4), 1552–1563.

Computer Hardware. (n.d.). Retrieved September 30, 2020, from

https://web.stanford.edu/class/cs101/hardware-

KIRIHATA, Y. (2009). Information processing apparatus and method, computer-readable

recording medium, and an external storage medium (United States Patent No.

US20090241114A1).

Lehmann, S., & Schweitzer, B. (2006). Apparatus, system, and method for creating

customized workflow documentation (United States Patent No. US20060059423A1).

ea
sy
tve
t.c
om

577

Nagar, T. (2019, December 3). What is software and types of software with examples?

YourStory.Com. https://yourstory.com/mystory/what-software-types-examples

6.2.5.8 Model answers to self -assessment

1. Give five characteristics of C Programming Language

 C is a powerful, flexible language that provides fast program execution.

 C is a Procedural Language i.e. the programmer is required to provide step-by-step

instructions for the CPU (central processing unit).

 The success of C is due to its simplicity, efficiency, flexibility and small memory

requirements.

 Low Level features: C's power and fast program execution come from its ability to access

low-level commands, similar to assembly language, but with high-level syntax.

 Portability: C programs are portable i.e. they can run on any compiler with little or no

modification. Compiler and Preprocessor make it possible for C program to run it on

different PC.

 Bit Manipulation: C Programs can be manipulated using bits and it provides a wide

variety of bit manipulation operators

 Modular Programming: It is a software design technique that increases the extent to which

software is composed of separate parts, called modules. A c program consists of different

modules that are integrated to form a complete program.

 Efficient Usage of Pointers: C supports the efficient use of pointers and pointers has direct

memory access.

2. What do the following fundamentals mean in C programming language? Give two

examples for each

e) C keywords

--Keywords are predefined, reserved words used in programming that have special meanings

to the compiler. Keywords are part of the syntax and they cannot be used as an identifier

f) Variables

ea
sy
tve
t.c
om

578

- A variable is a named storage location Variables which is used to store information to be

referenced and manipulated in a computer program. Example of variable include height, age

etc

g) C operators

An operator is a symbol that tells the compiler to perform specific mathematical or logical

functions. Example of C operators include arithmetic operators, assignment operators,

relational operators, logical operators etc

h) C expressions

- An expression is a formula in which operands are linked to each other by the use of

operators to compute a value. An operand can be a function reference, a variable, an array

element or a constant. Examples include arithmetic expressions, logical expressions,

conditional operators etc

3. Give the difference between Sequence and Selection control structures in C

programming

- In Sequence program execution, the program statements are executed one after another in

the order in which they are written while in Selection control, a logical test is carried out,

and one or more statements are usually selected

for execution depending on whether the condition given is True or False.

4. A lady deposits 2,000 shillings in a Microfinance company at an interest rate of 20% per

annum. At the end of each year, the interest earned is added to the deposit and the new

amount becomes the deposit for that year.

Write pseudocode for a program that would track the growth of the deposits over seven

years.

START NPUT Initial Deposit

INPUT Interest Rate

SET Deposit to Initial deposit (i.e., 2000)

SET Year to 0

ea
sy
tve
t.c
om

579

WHILE Year <= 7 DO

Interest = Deposit x Interest rate

Total = Deposit + Interest

Deposit = Total {the new deposit}

Year = Year + 1

ENDWHILE

PRINT Deposit, Year

STOP

ea
sy
tve
t.c
om

580

6.2.6 Learning Outcome 6: Perform Basic Internet programming

6.2.6.1 Introduction to the learning outcome

This learning outcome specifies the content of competencies required to perform basic internet

programming internet-based programming concepts, web programming approaches, web

programming languages, web programming interfaces, and HTML coding.

6.2.6.2 Performance Standard

6.2.6.2.1 Internet-based programming concepts are identified.

6.2.6.2.2 Web programming approaches are identified.

6.2.6.2.3 Web programming languages are identified.

6.2.6.2.4 Web programming interfaces are identified.

6.2.6.2.5 HTML coding is done.

6.2.6.3 Information Sheet

1. Basic internet programming

Concepts of internet programming

 Network concepts

 Web concepts

 Internet addresses

 Sockets

 Programming network applications

Network concepts

A network is in this respect a collection of interconnected computers and/or other kinds of

equipment Terminology:

 Inode, a machine that is connected to the network (computer, printer, bridge, vending

machine)

 host, a fully autonomous computer connected to the network

ea
sy
tve
t.c
om

581

 address, each node has a unique address (several bytes)

 packet, modern networks are packet-based, meaning that the information is broken down

to and sent as small chunks, each chunk of information handled separately.

 protocol, rules, specifying how to perform communication.

Web services

Web Application (Webapp)

A web application (or web app), unlike standalone application, runs over the Internet. Examples

of web apps are google, amazon, eBay, Facebook and the UCT website. A web app is typically a

3-tier (or multi-tier) client-server database application run over the Internet and it comprises five

components:

Basic Concepts

 • HTTP Server: E.g., Apache HTTP Server, Apache Tomcat Server, Microsoft Internet

Information Server (IIS), Nginx, Google Web Server (GWS), and others. You will learn how to

install Apache HTTP and Tomcat web servers in the next chapter.

 • HTTP Client (or Web Browser): E.g., Internet Explorer (MSIE), Firefox, Chrome, Safari,

and others.

• Database: E.g., Open-source MySQL, MariaDB, Apache Derby, MySQL, SQLite,

PostgreSQL, OpenOffice's Base; Commercial Oracle, IBM DB2, SAP Sybase, MS SQL Server,

MS Access; and others.

• Client-Side Programs: could be written in HTML Form, JavaScript, VBScript, Flash, and

others.

 • Server-Side Programs: could be written in Java Servlet/JSP, ASP, PHP, Perl, Python, CGI,

and others.

Programming network applications

-Alongside the technical ”evolution”, communication between the application and also between

parts of applications residing on a different computer become more and more common

ea
sy
tve
t.c
om

582

 Examples of asynchronously communicating applications: web browsers, e-mail, news.

Some other examples: Distributed databases, sound, radio, video and internet telephony.

Need for applications where the participants are aware of each other:

 Shared bulletin boards, whiteboards, shared word processors, control systems (eg. robots), and

(not the least) games (like RuneScape and world of warcraft).

There is support in the networks, where we will look closer on the internet

Kinds/types of application programs

 E-mail

 News

 Web-based databases

 Client-server,

 per-to-peer

 Telephone

 Video

Internet addresses

-Internet is the most knowledgeable and most widespread network.

 Designed it to be robust (errors are unusual)

First version 1969, ARPANET, designed by ARPA, a DoD unit.

In 1983 there were 562 computers on the ARPANET

In 1986 there were 5000 computers

In 1987 – 28000,

In 1989 – 100000,

In 1990 – 300000,

ea
sy
tve
t.c
om

583

In 2009 – 1.67 billion (a rough estimate on June 30)Layers

A network is built as a set of layers

 IP, Internet Protocol- the network layer protocol (the reason for the name ”Internet”)

 TCP, Transport Control Protocol-a connection-based protocol which ensures correct data

exchange between two nodes

UDP, User Datagram Protocol-a protocol which allows the transmission of independent packets

from one node to another with no guarantee concerning delivery or order of delivery

Sockets

A socket is one endpoint of a two-way communication link between two programs running on

the network. A socket is bound to a port number so that the TCP layer can identify the

application that data is destined to be sent to. An endpoint is a combination of an IP address and

a port number.

2. Web programming approaches

 Server-side

The Server-side is the systems that run on the server, and the client-side is the software that runs

on a user’s web browser. The basic hosting of your files is achieved through a web server whose

responsibilities are described below.

 Server-side development is much more than web hosting: it involves the use of a programming

technology like PHP or ASP.NET to create scripts that dynamically generate content.

 It is important to remember that when developing server-side scripts, you are writing software,

just like a C or Java programmer would do, with the major distinction that your software runs on

a web server and uses the HTTP request-response loop for most interactions with the clients.

This distinction is significant, since it invalidates many classic software development patterns,

and requires different thinking for many seemingly simple software principles like data storage

and memory management.

 Client-side

ea
sy
tve
t.c
om

584

Client-side web development involves interactivity and displaying data, server-side is about

working behind the scenes to manage data. The idea of client-side scripting is an important one

in web development. It refers to the client machine (i.e., the browser) running code locally rather

than relying on the server to execute code and return the result. Many client-side languages have

come into use over the past decade including Flash, VBScript, Java, and JavaScript. Some of

these technologies only work in certain browsers, while others require plug-ins to function.

Web programming languages

HTML

-HTML (HyperText Markup Language) a language used to develop web pages.

Hypertext means that some text in the HTML document carries a link to a different location,

which can be on the same page or another page. On clicking this 'hot spot', the viewer is

transferred to that location.

Markup means that specific portions of a document are marked up to indicate how they should

be displayed in the browser.

-HTML simply consists of tags that are placed around elements, which then changes the

properties of these enclosed elements. There are hundreds of HTML tags and some of these are

proprietary, which means that only some browsers recognize them.

<html>

 <head>

 <title>Internet programming</title>

</head>

<body>

</body>

</html>

 For further reading on HTML,click on the link below

https://youtu.be/UB1O30fR-EE

PHP

ea
sy
tve
t.c
om

https://youtu.be/UB1O30fR-EE

585

Open source

PHP not only carries all the goodness of ASP but also is more secure and handles databases more

easily. It is a known fact that PHP on Apache Web server runs faster than ASP. PHP code is

embedded inside the HTML page and can link to databases to generate dynamic HTML content.

PHP scripts can be made to run on any operating system with little or no modification.

Pros

 Can be embedded in HTML; seen as a dedicated web language.

 Deceptively simple to learn.

 Touted as a good beginner language.

 Large array of built-in functions for everything from PDF creation to credit-card

transactions to database interaction

 Available at a majority of hosting services

 Relatively good integration with apache.

Cons

 While the runtime services are good, the language itself is quite horrible

 Encourages writing bad code ^2 {too vague}'

 PHP implementation is full of bugs and might change semantics without a note, causing

constant security upgrades that break your code

 PHP encourages writing web programs in an insecure manner

 Not too fast (good for building database interfaces, not making calculations)

JAVASCRIPT

Javascript is a programming language that runs on a web browser. Jscript is Microsoft’s'

implementation of Javascript for Internet Explorer. Javascript is not a subset of Java, in fact,

the two languages share little in common. Javascript runs on the browser (client) and does

not require any server software. Thus, it is a client-side scripting language. Since all

execution takes place on the browser, Javascript is responsible for most of the interactivity on

a web page. Image change or text color change on mouse-over, creating mouse trails are all

ea
sy
tve
t.c
om

586

possible through Javascript. The language has also been widely used for basic form

validation.

Javascript is commonly embedded inside the HTML page and is thus visible to the visitor.

Javascript can also be written to run on a server and this is based on the ASP model promoted

by Microsoft.

Pros

 Most web developers familiar with language from the client-side.

Cons

 Server-side standards not settled

Consider the following video links for further reading on Javascript

https://youtu.be/uDwSnnhl1Ng

https://youtu.be/2nZiB1JItbY

3. Web Programming Interfaces

Common client interface

 CCI defines is a set of interfaces and classes whose methods allow a client to perform typical

data access operations. The following CCI interfaces and classes illustrate how to use the CCI

 ConnectionFactory: Provides an application component with a Connection instance to an

EIS.

 Connection- Represents the connection to the underlying EIS.

 ConnectionSpec: Provides a means for an application component to pass connection

request-specific properties to the ConnectionFactory when making a connection request.

 Interaction: Provides a means for an application component to execute EIS functions,

such as database stored procedures.

 InteractionSpec: Holds properties about an application component's Interaction with an

EIS.

 Record: The superclass for the different kinds of record instances. Record instances may

be Mapped Record, Indexed Record, or ResultSet instances, which all inherit from the

Record interface.

 Record Factory: Provides an application component with a Record instance.

ea
sy
tve
t.c
om

https://youtu.be/uDwSnnhl1Ng
https://youtu.be/2nZiB1JItbY

587

 Indexed Record: Represents an ordered collection of Record instances based on the java.

util.List interface.

A client or application component that uses the CCI to interact with an underlying EIS does so in

a prescribed manner. The component must establish a connection to the EIS's resource manager,

and it does so using the ConnectionFactory. The Connection object represents the actual

connection to the EIS and it is used for subsequent interactions with the EIS.

Common gateway interface

As you traverse the vast frontier of the World Wide Web, you will come across documents that

make you wonder, "How did they do this?" These documents could consist of, among other

things, forms that ask for feedback or registration information, imagemaps that allow you to click

on various parts of the image, counters that display the number of users that accessed the

document, and utilities that allow you to search databases for particular information. In most

cases, you'll find that these effects were achieved using the Common Gateway Interface,

commonly known as CGI. CGI is the part of the Web server that can communicate with other

programs running on the server. With CGI, the Web server can call up a program, while passing

user-specific data to the program (such as what host the user is connecting from, or input the user

has supplied using HTML form syntax). The program then processes that data and the server

passes the program's response back to the Web browser.

HTML

 Tags

An HTML element is identified in the HTML document by tags. A tag consists of the element

name within angle brackets. The element name appears in both the beginning tag and the closing

tag, which contains a forward slash followed by the element’s name, again all enclosed within

angle brackets. The closing tag acts like an off-switch for the on-switch that is the start tag

 Parcelling

 Coding

6.2.6.4 Learning Activities

Practical activity

Instructions

In your institutions’ computer lab perform the following practicals

ea
sy
tve
t.c
om

588

i. Write a basic structure of an HTML document and give a complete explanation of

each of the tags used

ii. Create your first web page which will print the text “Hello World!” on the screen.

6.2.6.5 Self-Assessment

1. What is a web programming language?

2. Give the meaning of the following Network Concepts.

i. Node

ii. Host

iii. Packet

iv. Protocol

3. What is the role of web programming language?

4. What is the difference between Client-side and Server-side web programming

approaches?

6.2.6.6 Tools, Equipment, Supplies and Materials

 Flow charts

 Data flow diagram

 Decision table

 Decision tree

 Web Authoring tools

 Notepad

 Computer

 Software

 Digital instructional material including DVDs and CDs

6.2.6.7 References

 Alzahrani, A. A. (2020). 4GL Code Generation: A Systematic Review. (IJACSA)

International Journal of Advanced Computer Science and Applications. 6(11). Retrieved

fromhttps://www.researchgate.net/profile/Abdullah_Alzahrani13/publication/342652608

ea
sy
tve
t.c
om

589

_4GL_Code_Generation_A_Systematic_Review/links/5f48e73892851c6cfdf046e6/4GL-

Code-Generation-A-Systematic-Review.pdf.

Connolly, R. (2015). Fundamentals of web development. Pearson Education.

Kumar, H. (2019). Programming software and Computer Languages. International

journal of advance research and innovative ideas in education. 3(5).

Selby, C. (2011). Four approaches to teaching programming. Retrieved from

Shaydulin, R., & Sybrandt, J. (2017). To agile, or not too agile: A comparison of software

development methodologies. arXiv preprint arXiv:1704.07469.

6.2.6.7 Model answers to self-assessment

1. What is web programming language

- The main difference between server-side scripting and client-side scripting is that the

server side scripting involves server for its processing. On the other hand, client-side

scripting requires browsers to run the scripts on the client machine but does not interact

with the server while processing the client-side scripts.

2. Give the meaning of the following Network Concepts

i. Node,-a machine that is connected to the network (computer, printer, bridge, vending

machine)

ii. Host -a fully autonomous computer connected to the network

iii. packet,- information that is broken down to and sent as small chunks, each chunk of

information handled separately.

iv. Protocol-rules, specifying how to perform communication in a networked environment

3. What is the role of web programming language

--The capabilities of the Internet have been enhanced and extended by using programming

languages with HTML. These languages have been responsible for the dynamic and

interactive nature of the Net. New languages and language extensions are being

developed to increase the usability of the Internet

4. Give the difference between Client-side and Server-side web programming approaches

--Client-side scripting generally refers to the class of computer programs on the web that

are executed client-side, by the user's web browser. Client-side scripts are often

ea
sy
tve
t.c
om

590

embedded within an HTML or XHTML document (hence known as an "embedded

script"), but they may also be contained in a separate file, to which the document (or

documents) that use it make reference (hence known as an "external script") while

-server-side scripting are executed by the web server when the user requests a

document. They produce output in a format understandable by web browsers (usually

HTML), which is then sent to the user's computer.

-The user cannot see the script's source code (unless the author publishes the code

separately), and may not even be aware that a script was executed. Documents

produced by server-side scripts may, in turn, contain client-side scripts.

5. Give a brief description of the following web programming interfaces

i. Common client Interface(CCI)

ii. Common Gateway Interface (CGI)

ea
sy
tve
t.c
om

	CHAPTER 6: COMPUTER PROGRAM DEVELOPMENT
	6.1 Introduction to the unit of learning
	6.2 Summary of Learning Outcomes
	6.2.1 Learning Outcome 1: Identify Programming concepts and approaches.
	6.2.1.2 Performance Standard
	6.2.1.3 Information Sheet
	Language translators
	Programming approaches

	6.2.1.4 Learning Activities
	6.2.1.5 Self-Assessment
	6.2.1.6 Tools, Equipment, Supplies, and Materials
	6.2.1.7 References
	6.2.2 Learning Outcome 2: Identify Program Development Methodologies
	6.2.2.1 Introduction to the learning outcome
	6.2.2.2 Performance Standard
	6.2.2.3 Information Sheet
	Description of Program specifications
	Program development methodologies
	Program Development Life Cycle
	Styles of programing

	6.2.2.4 Learning Activity
	6.2.2.5 Self-Assessment
	6.2.2.6 Tools, Equipment, Supplies, and Materials
	6.2.2.7 References
	6.2.3 Learning Outcome 3: Identify Program design
	6.2.3.1 Introduction to the learning outcome
	6.2.3.2 Performance Standard
	6.2.3.3 Information Sheet
	 Program design
	 Program design approaches
	Program Design Tools
	I. Algorithm
	II. Flowchart

	6.2.3.4 Learning Activities
	6.2.3.5 Self-Assessment
	6.2.3.6 Tools, Equipment, Supplies and Materials
	6.2.3.7 References
	6.2.4 Learning Outcome 4: Identify Computer Programming Languages
	6.2.4.1 Introduction to the learning outcome
	6.2.4.2 Performance Standard
	6.2.4.3 Information Sheet
	 Programming Languages
	 Factors to consider when choosing a programming language.
	 Program development tools

	6.2.4.4 Learning Activities
	6.2.4.5 Self-Assessment
	6.2.4.6 Tools, Equipment, Supplies, and Materials
	6.2.4.7 References
	6.2.5 Learning Outcome 5: Perform Basic Structured programming using C language.
	6.2.5.1 Introduction to the learning outcome
	6.2.5.2 Performance Standard
	6.2.5.3 Information Sheet
	 C Programming Language
	Preprocessor directives
	Example
	Input and output statements
	C keywords
	Variables
	C operators and expressions
	C expressions
	Control structures
	Subprograms
	C program format

	6.2.5.4 Learning Activities
	6.2.5.6 Self-Assessment
	6.2.5.7 Tools, Equipment, Supplies, and Materials
	6.2.5.7 References
	6.2.6 Learning Outcome 6: Perform Basic Internet programming
	6.2.6.1 Introduction to the learning outcome
	6.2.6.2 Performance Standard
	6.2.6.3 Information Sheet
	1. Basic internet programming
	2. Web programming approaches
	Web programming languages
	3. Web Programming Interfaces

	6.2.6.4 Learning Activities
	6.2.6.5 Self-Assessment
	6.2.6.6 Tools, Equipment, Supplies and Materials
	6.2.6.7 References

