APPLIED MATHEMATICS

UNIT CODE: LSM/CU/LM/CC/01/6/A

Relationship to Occupational Standards

This unit addresses the unit of competency: Apply mathematical skills
Duration of Unit: 80 hours

Unit Description

This unit describes competencies required by a technician to apply a wide range of mathematical skills, apply ratios and proportions to solve problems; use algebraic and graphical techniques to analyse mathematical problems; apply concepts of probability; perform commercial calculations and collect, organise and analyse statistical data.

Summary of Learning Outcomes

1. Apply Algebra
2. Apply Trigonometry and hyperbolic functions
3. Apply complex numbers
4. Apply Coordinate Geometry
5. Carry out Binomial Expansion
6. Apply Calculus
7. Solve Ordinary differential equations
8. Carry out Mensuration
9. Apply Power Series
10. Apply Statistics
11. Apply Vector theory
12. Apply Matrix
13. Apply Numerical methods

Learning Outcomes, Content and Suggested Assessment Methods

Learning Outcome	Content	Suggested Assessment Methods
1. Apply Algebra	Base and Index Law of indices Indicial equations Laws of logarithm Logarithmic equations Conversion of bases	- Written tests - Oral questioning - Assignments - Supervised exercises

	Use of calculator Reduction of equations Solution of equations reduced to quadratic form Solutions of simultaneous linear equations in three unknowns Solutions of problems involving AP and GP	
2. Apply Trigonometry and hyperbolic functions	\square Half -angle formula - Factor formula \square Trigonometric functions - Parametric equations \square Relative and absolute measures \square Measures calculation \square Definition of hyperbolic equations \square Properties of hyperbolic functions - Evaluations of hyperbolic functions Hyperbolic identities - Osborne's Rule - Ashx $+b s h x=C$ equation \square One-to-one relationship in functions \square Inverse functions for one-to-one relationship \square Inverse functions for trigonometric functions - Graph of inverse functions \square Inverse hyperbolic functions	\square Written tests \square Oral questioning \square Assignments \square Supervised exercises
3. Apply complex numbers	Definition of complex numbers \square Stating complex numbers in numbers in terms of conjugate argument and - Modulus \square Representation of complex numbers on the Argand diagram	- Assignments - Oral questioning - Supervised exercises - Written tests

	\square Arithmetic operation of complex numbers Application of De Moivre's theorem \square Application of complex numbers to engineering	
4. Apply Coordinate Geometry	Polar equations \square Cartesian equation - Graphs of polar equations \square Normal and tangents - Definition of a point - Locus of a point in relation to a circle \square Loci of points for given mechanism	- Assignments - Oral questioning - Practical tests - Observation - Supervised exercises - Written tests
5. Carry out Binomial Expansion	\square Binomial theorem Power series using binomial theorem Roots of numbers using binomial theorem. Estimation of errors of small changes using binomial theorem	- Assignments - Supervised exercises - Written tests
6. Apply calculus	\square Definition of derivatives of a function Differentiation from fist principle Tables of some common derivatives Rules of differentiation \square Rate of change and small change - Stationery points of functions of two variables \square Definition of integration \square Indefinite and definite integral - Methods of integration application of integration.	- Assignments - Supervised exercises - Written tests

	\square Integrals of hyperbolic and inverse functions	
7. Solve Ordinary differential equations	\square Types of first order differential equations \square Formation of first order differential equation \square Solution of first order differential equations \square Application of first order differential equations \square Formation of second order differential equations for various systems - Solution of second order differential equations \square Application of second order differential equations	- Assignments - Oral questioning - Supervised exercises - Written tests
8. Carry out Mensuration	- Units of measurements \square Perimeter and areas of regular figures - Volume of regular solids - Surface area of regular solids \square Area of irregular figures \square Areas and volumes using Pappus theorem	- Assignments - Supervised exercises - Written tests
9. Apply Power Series	- Definition of the term power series Taylor's theorem Deduction of Maclaurin's theorem to obtain power series Application of Taylor's theorem and Maclaurin's theorems in numerical work	- Written tests - Assignments - Supervised exercises
10. Apply Statistics	- Classification of data - Grouped data	- Oral questioning - Written tests - Assignments

11. Apply Numerical methods	\square Definition of interpolation and extrapolation Application of interpolation Application of interactive methods to solve equations Application of interactive methods to areas and volumes	- Assignments - Oral questioning - Supervised exercises - Written tests
12. Apply Vector theory	Vectors and scalar in two and three dimensions \square Operations on vectors: Addition and Subtraction - Position vectors \square Resolution of vectors	Assignments Oral questioning Supervised exercises Written tests
13. Apply Matrix methods	- Matrix operation D Determinant of 3×3 matrix \square Inverse of 3×3 matrix - Solution of linear simultaneous equations in 3 unknowns \square Application of matrices	Assignments Oral questioning Supervised exercises Written tests

Suggested Delivery Methods

- Lecturing
- Group discussions
- Demonstration by trainer
- Exercises by trainee

Recommended Resources

- Scientific Calculators
- Rulers, pencils, erasers
- Charts with presentations of data
- Graph books
- Dice
- Computers with internet connection

