APPLY THERMODYNAMICS PRINCIPLES

UNIT CODE: ENG/OS/MC/CC/06/6/A

Unit description

This unit describes the competencies required by a mechatronic technician in order to apply thermodynamics principles in their work. It includes understanding fundamentals of thermodynamics, performing steady flow processes, performing non steady flow processes, understanding perfect gases, generating steam, performing thermodynamics reversibility and entropy, understanding idea gas cycle, demonstrating fuel and combustion, perform heat transfer, understanding heat exchangers, understanding air compressors, understanding gas turbines and understanding of impulse steam turbines

ERFORMANCE CRITERIA
nese are assessable statements which specify the
quired level of performance for each of the elements.
old and italicized terms are elaborated in the Range.
1 Terms used in thermodynamics are described
according to prescribed guidelines
2 Thermodynamics processes and cycles are described
according to prescribed guidelines
3 First law of thermodynamics is applied in accordance
to prescribed guidelines
1 Operation principles of air compressors are studied
according to manufacture specification
2 <i>Types of air compressors</i> are identified according to
manufacturer's specifications
3 Work inputs, compressor clearances and varying
outputs are calculated according to compressor types
4 Multi-staging and intercooling of air compressors is
performed according to manufacturer's specifications
5 compressed air engines are studied according to
manufacturer specifications
1 Rankine cycle is studied according to
thermodynamics principles
2 Reheat cycle is studied according to thermodynamics
principles
3 Stream generation is performed according to user specification
4 Steam cycle efficiencies are determined according to

ELEMENTS AND PERFORMANCE CRITERIA

ELEMENT	PERFORMANCE CRITERIA
These describe the key	These are assessable statements which specify the
outcomes which make up	required level of performance for each of the elements.
workplace function.	Bold and italicized terms are elaborated in the Range.
	thermodynamic principles
4. Understand steam	4.1 Reciprocating engine principles are studied
engines	according to manufacturer specifications
	4.2 Valves and timing methods are studied according to
	user specifications
	4.3 Power calculations are performed according to
	thermodynamic principles
	4.4 Ideal thermal and mechanical efficiency are
	calculated according to thermodynamic principles
	4.5 Indicated and brake power are determined according
	to thermodynamic principles
5. Understand steam	5.1 Reaction, impulse and staging is performed
turbines	according to manufacture specifications
	5.2 Velocity calculations are performed according to
	manufacturer specifications
	5.3 Turbine design considerations are determined
	according to user specification
	5.4 Ideal, thermal and mechanical efficiencies are
	calculated according to thermodynamic principles
	5.5 Condensing arrangements are performed according
	to user specifications
6. Perform refrigeration	6.1 Reversed Carnot cycle is studied according to
	thermodynamics principles
	6.2 Cycle analysis is performed according to
	thermodynamic principles
	6.3 Heat pumps are studied according to manufacturer
	specifications
	6.4 Absorption refrigeration systems are studied
	according to manufacturers specifications
	6.5 Steam jet refrigeration systems are studied according
	manufacturer specifications

RANGE

This section provides work environments and conditions to which the performance criteria apply. It allows for different work environments and situations that will affect performance.

Variable	Range
Types of air compressors may	Reciprocating
include but is not limited to:	• Rotary
	• Piston

REQUIRED SKILLS AND KNOWLEDGE

This section describes the skills and knowledge required for this unit of competency.

Required Skills

The individual needs to demonstrate the following skills:

- Apply basic mechanical formulas
- Use of basic mechanical machines
- Perform various unit conversions of mechanical quantities
- Basic mechanical systems design
- Mechanical machine operation
- Logical thinking
- Problem solving
- Applying statistics
- Drawing graphs
- Using different measuring tools

Required knowledge

The individual needs to demonstrate knowledge of:

- Newton's law
- Levers
- Gear trains
- Laws of conservation of energy
- Laws of friction
- Type of forces
- Thermodynamics
- Calculation of fluid pressure and flow rate
- Mechanical advantage and efficiency calculations
- Gas laws
- SI units of mechanical energy.
- Power transmission systems
- Parameters of fluid system

- Operation of mechanical machines
- Mechanical calculation of power, energy, work done, torque and safety factor
- Units of measurement, conversions and abbreviations

EVIDENCE GUIDE

This provides advice on assessment and must be read in conjunction with the performance criteria, required skills and knowledge and range.

1 Critica	l aspects of	Assessment requires evidence that the candidate:
Compe	etency	1.1 Identified Principles of mechanical science
		1.2 Performed mechanical calculations of a system
		1.3 Identified types of forces on a system
		1.4 Calculated resultant forces on plane framework
		1.5 Identified application of forces on the production flow
		1.6 Tested mechanical properties of a materials
		1.7 Identified tools and equipment for measuring system
		parameters
		1.8 Recorded and interpreted measured parameters.
		1.9 Operated Power transmission systems
6. Resour	rce	The following resources should be provided:
Implica	ations	6.1 Access to relevant workplace or appropriately simulated
		environment where assessment can take place
		6.2 Measuring tools and equipment
		6.3 Sample materials to be tested
7. Metho	ods of	Competency in this unit may be assessed through:
Assess	ment	7.1 Direct Observation
		7.2 Demonstration with Oral Questioning
		7.3 Case studies
		7.4 Written tests
Context of Assessment		Competency may be assessed individually in the actual
		workplace or
		through accredited institution
Guidance i	information	Holistic assessment with other units relevant to the industry
for assessment		sector, workplace and job role is recommended.