TVET CURRICULUM DEVELOPMENT, ASSESSMENT AND CERTIFICATION COUNCIL (TVET CDACC)

Qualification Code	$:$	$071606 T 4 M C T$
Qualification	$:$	Mechatronics Technician Level 6
Unit Code	$:$	ENG/OS/MC/CC/02/6/A
Unit of Competency :	Apply Engineering Mathematics	

ASSESSOR'S GUIDE

INSTRUCTIONS TO ASSESSOR

1. Marks for each question are indicated in the brackets.
2. Answers provided are model answers.

SECTION A (40 MARKS)

(These only serves as a guide to expected responses)

1. Determine the mean of the following $\{2,3,7,5,5,13,1,7,4,8,3,4,3\}$.

Solution

Mean, $M=\frac{f x}{n}=\frac{65}{13}=5$
award 1mark for correct formula Award 1mark correct answer
2. If $p=15 i-10 j+30 k$, find the modulus of p Solution

Modulus $/ \mathrm{P} /=\sqrt{ } 15^{2}+10^{2}+30^{2}=\sqrt{ } 1225=35$ units
(2 Marks)
award 1mark formula
Award 1mark for correct answer
3. The interior angle of a n-sided regular polygon exceeds its exterior angle by 132°. Calculate the number of sides.

Solution

Let the size of exterior be x , then interior becomes $(x+132)$
sln

But Interior + exterior $=180^{\circ}$

$$
\begin{aligned}
& \mathrm{x}+(\mathrm{x}+132)=180^{\circ} \\
& 2 \mathrm{x}=180-132=48 \\
& \text { And } \mathrm{x}=24^{\circ} \\
& \text { But: } \\
& \text { Number of sides } n=\frac{360^{\circ}}{\text { Size of exterior }(\theta)} \\
& \text { Number of sides } n=\frac{360^{\circ}}{24^{\circ}}=\mathbf{1 5} \text { sides }
\end{aligned}
$$

Award 1mark formula, Award 1mark simplification and 1mark correct answer.
4. The diagram below shows a circle with a chord $\mathrm{PQ}=3.4 \mathrm{~cm}$ and angle $\mathrm{PRQ}=40^{\circ}$. Calculate the area of the shaded segment.

Solution |

By Angle properties of a circle, Angle formed at the Centre is twice the angle at the Circumference i.e $2 \times 40=80^{\circ}$

Award 2mark for proper description 1marks for formulas 1mark for proper substitution 1marks for correct answer

Base Angle $<\mathrm{OPQ}=<\mathrm{PQO}=50^{\circ}$
Dropping a perpendicular bisector from point O to divide line PQ into two equal parts

The radius OQ can be calculated by SOHCAHTOA
$\operatorname{Cos} 50=\frac{A d}{H y}=\frac{1.7}{O Q^{\prime}}, \rightarrow O Q=\frac{1.7}{\operatorname{Cos} 50}=2.644 \mathrm{~cm}$

Hence radius $\mathrm{r}=2.644$
Area of Shaded= area of sector - Area of
Triangle OPQ
c S

$$
\begin{aligned}
& =\frac{22}{7} \times 2.644^{2}-\frac{1}{2} \times 2.644 \times 2.644 \operatorname{Sin} 80 \\
& =22.30-3.442 \\
& =\mathbf{1 8 . 8 6} \mathrm{cm}^{2}
\end{aligned}
$$

5. Given that $\mathrm{A}=\left(\begin{array}{cc}2 & 1 \\ 0 & -2\end{array}\right)$ and

$$
\mathrm{B}=\left(\begin{array}{ll}
1 & -2 \\
2 & -1
\end{array}\right) \text { and that } \mathrm{C}=\mathrm{AB} \text {, evaluate } \mathrm{C}^{-1}
$$

Solution
$C=A B$
$=\left(\begin{array}{cc}2 & 1 \\ 0 & -2\end{array}\right)\left(\begin{array}{ll}1 & -2 \\ 2 & -1\end{array}\right)$
$=\left(\begin{array}{cc}2+2 & -4+-1 \\ 0+-4 & 0+2\end{array}\right)$
$C=\left(\begin{array}{cc}4 & -5 \\ -4 & 2\end{array}\right)$
Hence Invers, $C^{-1}=\frac{1}{(4 \times 2)-(-5 x-4)}\left(\begin{array}{ll}2 & 5 \\ 4 & 4\end{array}\right)$
$=\frac{1}{-12}\left(\begin{array}{ll}2 & 5 \\ 4 & 4\end{array}\right)$
Or

$$
\left(\begin{array}{ll}
-0.1667 & -0.4167 \\
-0.3333 & -0.3333
\end{array}\right)
$$

1mark for proper substitution, 2marks for correct answer
6. The surface area of a sphere is 201.1 cm 2 .find the diameter of the sphere.
(4 Marks)

Solution

$$
\begin{gathered}
S . A=4 \pi r^{2} \\
201.1=4 \pi r^{2}
\end{gathered}
$$

$\boldsymbol{r}=\sqrt{ } 201.1 / 4$
$r=7.0904 \mathrm{~cm}$
Diameter $=2 \mathrm{r}=14.19 \mathrm{~cm}$

Award 1 mark for correct formula, 2marks for calculating radius and 1 mark for correct diameter answer.
7. A mother is now $2 \frac{1}{2}$ times as old as her daughter Mary; four years ago, the ratio of their ages was $3: 1$. What is the present age of the mother?

Solution

Let the present age of Mary be x
Mother,,. ..., .., .., .., ..2.5x
Now fill the columns of the tables as indicated,

	Ages in 4years ago	Present ages
Mary	$(x-4)$	x
mother	$(2.5 x-4)$	$2 x$

Now according to the statements, we can equate
the ages of Mary and that of the Mother as shown.
Note: Ratio is a fraction

$$
\frac{\text { Mother }}{\text { Mary }}=\frac{2.5 x-4}{x-4}=\frac{3}{1}
$$

And cross multiplying;
$3(x-4)=2.5 x-4$
$3 x-2.5 x=-4+12$
$0.5 x=8$
$x=16$ years now
Mother, Now $=2.5 \times 16=40$ years

Award 1mark formula, 2marks for correct simplification and answer.

8. Given that: $-\mathrm{r}=5 \mathrm{i}-2 \mathrm{j}$ and $m=-2 i+6 j-k$ are the position vectors for R and M respectively. Find the length of vector RM

Solution

$$
\begin{gathered}
\mathbf{R} \mathbf{M}=\mathbf{M}-\mathbf{R}=\left(\begin{array}{c}
-2 \\
6 \\
-1
\end{array}\right)-\left(\begin{array}{c}
5 \\
-2 \\
0
\end{array}\right)=\left(\begin{array}{c}
-7 \\
8 \\
-1
\end{array}\right) \\
\text { Magnitude }=\sqrt{(-7)^{2}+(8)^{2}+(-1)^{2}} \\
=\sqrt{49+64+1} \\
\sqrt{114}=10.67
\end{gathered}
$$

Award 1mark formula, 1mark for correct answer
9. Use Binomial theorem to expand
$(2+3 \boldsymbol{x})^{\frac{1}{2}}$ as far as the term in x^{3}, and state the range of values of x which the expansion is valid.
(4 Marks)

Solution

NOTE: Only Upto the $4^{\text {th }}$ Term

$$
\begin{aligned}
& (2+3 x)^{1 / 2}=\left(2\left(1+\frac{3 x}{2}\right)\right)^{1 / 2} \\
& =\left(2^{1 / 2}\left(1+\frac{3 \cdot x}{2}\right)^{1 / 2}\right) \text { Let } \mathbf{p}=\frac{3 x}{2} \\
& 2^{\frac{1}{2}}\left(1+n \mathrm{p}+\frac{n(n-1)(p)^{2}}{2!}+\frac{n(n-1)(n-2)(p)^{3}}{3!}\right) \\
& 2^{\frac{1}{2}}\left(1+\frac{1}{2}\left(\frac{3 x}{2}\right)+\frac{\frac{1}{2}\left(\frac{1}{2}-1\right)\left(\frac{3 x}{2}\right)^{2}}{2}+\frac{\frac{1}{3}\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(\frac{3 x}{2}\right)^{3}}{6}\right) \\
& \text { Hence. } 1.4142+1.06 \mathrm{x}+0.3977 x^{2}+ \\
& 0.2983 x^{3} \\
& \text { and Valid when }-\frac{2}{3} \leq x \leq \frac{2}{3}
\end{aligned}
$$

Award 1mark formula, 1mark for proper substitution and simplification, 1mark for correct answer
10. Solve $\frac{d y}{d x}$ from the first principle, given that $y=\frac{1}{x+4}$

Solution

$$
\begin{aligned}
& f^{-1} x=\frac{\text { limit }}{h-0}\left(\frac{f(x+h)-f(y)}{h}\right) \\
& \frac{\delta y}{\delta x}=\frac{\text { limit }}{h-0}\left(\frac{\left(\frac{1}{x+h+4}\right)-\left(\frac{1}{x+4}\right)}{h}\right) \\
& \frac{\delta y}{\delta x}=\frac{\text { limit }}{h-0}\left(\frac{(x+4-(x+h+4)}{\frac{(x+h+4)(x+4)}{h}}\right) \\
& =\frac{\text { limit }}{h-0}\left(\frac{-h}{\left.\frac{(x)^{2}+3 x+(x+4) h+16}{h}\right)}\right. \\
& =\frac{-h}{(x)^{2}+8 x+(x+4) h+16} \times \frac{1}{h} \\
& =\frac{\text { limit }}{h-0}\left(\frac{-h}{(x)^{2}+8 x+(x+4) h+16}=\frac{-1}{x^{2}+8 x+16}\right.
\end{aligned}
$$

Award 1 marks formula, 2mark for proper substitution and simplification, 2marks for correct answer
11. Use implicit differentiation of $9 \mathrm{x}+\boldsymbol{x}^{3} \boldsymbol{y}^{2}-\mathbf{2 x} \boldsymbol{y}^{2}+\mathbf{3 y}=\mathbf{6}$, to determine the equation of the tangent at point $(1,1)$

Solution

Generally the Gradient of the curve at appoint is equal to the gradient of the
Tangent touching the curve at that same
point
Normal Line (N)

Award 1 marks formula ,2mark for proper substitution and calculations

$$
\begin{aligned}
& \frac{d y}{d x} 9 x+\frac{d y}{d x} x^{3} y^{2}-\frac{d y}{d x} 2 x y^{2}+\frac{d y}{d x} 3 y=\frac{d y}{d x} 6 \\
& =9+\left(x^{3} \frac{d y}{d x} \boldsymbol{y}^{2}+y^{2} \frac{d y}{d x} x^{3}\right)-\left(2 \mathrm{x} \frac{d y}{d x} y^{2}+y^{2}\right. \\
& \left.\frac{d y}{d x} 2 x\right)+\frac{d y}{d x} 3 y=0
\end{aligned}
$$

Note. Use Product Rule To differentiate the part $\boldsymbol{x}^{\mathbf{3}} \boldsymbol{y}^{\mathbf{2}}$ and $\mathbf{2} \boldsymbol{x} \boldsymbol{y}^{2}$ and differentiate it implicitly
$9+2 x^{3} \frac{d y}{d x} y+3 x^{2} y^{2}-\left(4 \mathrm{xy} \frac{d y}{d x}+2 y^{2}\right)+3 \frac{d y}{d x}=0$,
$9+2 x^{3} \frac{d y}{d x} y+3 x^{2} y^{2}-4 \mathrm{xy} \frac{d y}{d x}-2 y^{2}+3 \frac{d y}{d x}=0$,
$\frac{d y}{d x}\left(2 x^{3} y-4 x y+3\right)=2 y^{2}-3 x^{2} y^{2}-9$
And making $\frac{d y}{d x}$ the Subject,

$$
\frac{d y}{d x}=\frac{2 y^{2}-3 x^{2} y^{2}-9}{\left(2 x^{3} y-4 \mathrm{xy}+3\right)}
$$

And at (1,-1)
Gradient, $\frac{d y}{d x}=\frac{2 y^{2}-3 x^{2} y^{2}-9}{\left(2 x^{3} y-4 x y+3\right)}$

$$
=\frac{2(-1)^{2}-3(1)^{2}(-1)^{2}-9}{\left(2(1)^{3}(-1)-4(1)(-1)+3\right)}=-2
$$

Gradient of tangent $=\mathrm{dy} / \mathrm{dx}$

$$
\frac{-2}{1}=\frac{y-(-1)}{x-1}
$$

$y+1=-2(x-1)$
$y=2 x+1$

1marks for correct answer

12. Two resistors when connected in Parallel, give a total resistance of 9.6 ohms. When connected in series, the total resistance was 40 Ohms. If one of the resistors is R Ohms, Show that ; $\boldsymbol{R}^{2}-\mathbf{4 0 R}+\mathbf{3 8 4}=\mathbf{0}$

Solution

1mark for proper parallel substitution

In parallel $\frac{R 1 R 2}{R 1+R 2}=9.6$ eqtn 1

1mark for proper series substitution

In series: R1 + R2 $=40 \quad$ eqta 2
So, R1=40-R2

$$
\begin{aligned}
& \frac{(40-R 2) R 2}{(40-R 2)+R 2}=9.6 \\
& \frac{40 R 2-R 2^{2}}{40-R 2+R 2}=\frac{9.6}{1}
\end{aligned}
$$

$=\frac{40 \mathrm{R} 2-\mathrm{R} 2^{2}}{40}=\frac{9.6}{1}$
And 40R2-R2 $2^{2}=384$
$=40 \mathrm{R} 2-\mathrm{R} 2^{2}-384=0$
So that $R 2^{2}-40 R 2+384=0$

SECTION B (60 MARKS)

13. study the matrices set below and use Cramer's theorem to find;

$$
\begin{aligned}
& 4 x+8 y+z=-6 \\
& 2 x-3 y+2 z=0 \\
& x+7 y-3 z=-8
\end{aligned}
$$

a) Its determinant

Solution

Here the determinant of the coefficients is:

$$
\begin{aligned}
|\mathrm{A}| & =\left|\begin{array}{ccc}
-4 & 2 & -9 \\
3 & 4 & 1 \\
1 & -3 & 2
\end{array}\right| \\
& =-4(8+3)-2(6-1)-9(-9-4) \\
|\mathrm{A}| & =-44-10+117
\end{aligned}
$$

Award 2 marks correct formula, 2 marks for correct answer
b) Its inverse

Solution

$$
\mathrm{A}^{-1}=\frac{\operatorname{adj} \mathrm{A}}{|\mathrm{~A}|}
$$

$$
\begin{array}{cccc}
11 & 5 & 13 \\
\mathbf{A}^{-1}=1 / 63 & 5 & 10 \\
-38 & 23 & 22
\end{array}
$$

Award 2 mark for correct inverse formula, 3marks for correct substitution and simplifications, 2 marks for correct answer.
c) Solutions x, y and z of the matrix

Solution
for $\left|\mathrm{A}_{\mathrm{x}}\right|$, replacing the first column of $|\mathrm{A}|$ with the corresponding constants 2,5 and 8 , we have

$$
\begin{aligned}
\left|A_{x}\right| & =\left|\begin{array}{ccc}
2 & 2 & -9 \\
5 & 4 & 1 \\
8 & -3 & 2
\end{array}\right| \\
& =2(11)-2(2)-9(-47)=22-4+423 \\
\left|A_{x}\right| & =441
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\left|A_{y}\right| & =\left|\begin{array}{ccc}
-4 & 2 & -9 \\
3 & 5 & 1 \\
1 & 8 & 2
\end{array}\right| \\
& =-4(2)-2(5)-9(19) \\
& =-8-10-171
\end{aligned}
$$

$$
\left|\mathbf{A}_{y}\right|=-189
$$

and

$$
\begin{aligned}
\left|\mathrm{A}_{\mathrm{z}}\right| & =\left|\begin{array}{ccc}
-4 & 2 & 2 \\
3 & 4 & 5 \\
1 & -3 & 8
\end{array}\right| \\
& =-4(47)-2(19)+2(-13) \\
& =-188-38-26 \\
\left|\mathrm{~A}_{\mathrm{z}}\right|= & -252
\end{aligned}
$$

Hence $\quad x=\frac{\left|A_{x}\right|}{|A|}=\frac{441}{63}=7$

$$
\begin{aligned}
& y=\frac{\left|A_{y}\right|}{|A|}=\frac{-189}{63}=-3 \\
& z=\frac{\left|A_{z}\right|}{|A|}=\frac{-252}{63}=-4
\end{aligned}
$$

So the solution set of the system is $\{(7,-3,-4)\}$
Award 2mark for each step of /A/ and 1mark for each solution. NB; accept any other valid formula
14. The following table gives the frequency distribution of the number of orders received each day during the past 50 days at the office of a mail-ordercompany. Calculate;

No. of order	f
$10-12$	4
$13-15$	12
$16-18$	20
$19-21$	14
Total	$\mathrm{n}=50$

i) Variance
(12 Marks)

Solution:

No. of order	f	\boldsymbol{x}	$f x$	$f x^{2}$
10-12	4	11	44	484
13-15	12	14	168	2352
16-18	20	17	340	5780
19-21	14	20	280	5600
Total	$\mathrm{n}=50$		832	14216
Variance,	$\sum f x^{2}-\underline{\left(\sum f x\right)^{2}}$			
	$s^{2}=\frac{n}{\underset{(832)^{c}}{n-1}}$			
	$=\frac{14216-\frac{50}{50}}{}$			
	50-1			
	$=7.5820$			

Award 7marks for correct table, 2 marks for variance formula, 2 marks for correct substitution and simplification,1marks for correct answer.
ii) Standard deviation

$$
\text { Standard Deviation, } s=\sqrt{s^{2}}=\sqrt{7.5820}=2.75
$$

Award 3marks for correct formula, 5marks answer. NB;(accept any other formula applied by the trainee)
15. Given that $A=3 i+4 k$ and $B=4 i+3 k$, evaluate;
I. A.B

Solution

$A \cdot B$
$=A_{1} \cdot B_{1}+A_{2} \cdot B_{2}$
$=3 \cdot 4+4 \cdot 3$
$=12+12$
$=24$
Award 2 mark for correct formula, 2marks for correct substitutions, 2 marks for correct answer.
II. /A/ and /B/
(5 Marks)
Solutions

$$
\begin{array}{ll}
|A| & |\vec{B}| \\
=\sqrt{A_{1}^{2}+A_{2}^{2}} & =\sqrt{B_{1}^{2}+B_{2}^{2}} \\
=\sqrt{3^{2}+4^{2}} & =\sqrt{4^{2}+3^{2}} \\
=\sqrt{9+16} & =\sqrt{16+9} \\
=\sqrt{25} & =\sqrt{25} \\
& =5
\end{array}
$$

Award 1/2mark for correct formula (each), 1marks for correct substitutions (each), 1marks for correct answer (each)
III. The angle between A and B

$$
\begin{aligned}
& \cos (\theta)=\frac{A \cdot B}{|A| \cdot|B|} \\
& \cos (\theta)=\frac{24}{5 \cdot 5}=0.96 \\
& \therefore \theta=\cos ^{-1}(0.96)=0.2838 \mathrm{rad} \\
& \therefore \theta=16.2602^{\circ}
\end{aligned}
$$

Award 3mark for correct formula, 2marks for correct substitutions, 2marks for correct answer in rads and 2 marks for correct answer in degrees.
16. The diagram below shows a metal solid consisting of a cone mounted on hemisphere. The height of the cone is $1 \frac{1}{2}$ times its radius;

a) The radius of the cone

Solution

This becomes simple, the radius $=r$ and height of the solid to be $h=1 \frac{1}{2} r$
so,
Total. Volume $=V$. Hemispher + V.Cone
$31.5 \pi \mathrm{~cm}^{3}=\frac{2}{3} \pi r^{3}+\frac{1}{3} \pi r^{2} h$
$31.5 \pi \mathrm{~cm}^{3}=\frac{2}{3} \pi r^{3}+\frac{1}{3} \pi r^{2} h$
And substituting for h_{4} we have:
$31.5 \pi \mathrm{~cm}^{3}=\frac{2}{3} \pi r^{3}+\frac{1}{3} \pi r^{2}\left(1 \frac{1}{2} r\right)$
$31.5 \pi \mathrm{~cm}^{3}=\frac{2}{3} \pi r^{3}+\frac{1}{3} \pi r^{3}\left(\frac{3}{2}\right)$
$31.5 \pi \mathrm{~cm}^{3}=\pi r^{3}\left[\frac{2}{3}+\frac{3}{6}\right]$
$31.5 \pi \mathrm{~cm}^{3}=\frac{7}{6} \pi r^{3}$
$r^{3}=\frac{31.5 \times 6}{7}=27$
$r=\sqrt[3]{27}=3 \mathrm{~cm}$
Award 1 mark for correct formula, 2marks for correct substitutions, 2marks for correct answer.
b) The surface area of the solid

```
Solution
Total.S.A = S.A of hemisphere +S.A of the
curved part of Cone
    =2\pir}\mp@subsup{}{}{2}+\pir
```

|

$$
=2 \times \frac{22}{7} \times 3^{2}+\frac{22}{7} \times 3 \times l
$$

but: $h=1 \frac{1}{2} r=\frac{3}{2} x(3)=4.5$ and,
Slant height $l=\sqrt{r^{2}+h^{2}}$

$$
l=\sqrt{3^{2}+(4.5)^{2}}=5.408 \mathrm{~cm}
$$

Therefore Volume become:

$$
\begin{aligned}
& =2 \times \frac{22}{7} \times 3^{2}+\frac{22}{7} \times 3 \times 5.408 \\
& =56.57+50.99 \\
& =107.6 \mathrm{Cm}^{2}
\end{aligned}
$$

Award 2marks for correct formula, 2marks for correct substitutions, 3marks for correct answer.
c) How much water will rise if the solid is immersed totally in a cylindrical container which Contains some water, given the radius of the cylinder is 4 cm .
(5 Marks)

Solution

In this case, we first, find the base area of the cylinder,

Base Area of a cylinder $=\pi r^{2}$
$=\frac{22}{7} \times 4^{2}=50.29 \mathrm{Cm}^{2}$
Now assuming that there was water inside the cylinder and above solid $V=31.5 \pi \mathrm{~cm}^{3}$
Is immersed, then 31.5π would be
increased volume:
Therefore
Volume $=$ Base Area of Cylinder x height
$31.5 \pi=50.29 h$
..- -. - -...
$h=\frac{31.5 \pi}{50.29}=\frac{31.5 \times 3.142}{50.29}=1.968 \mathrm{~cm}$
/
Award 1mark for correct formula, 3marks for correct substitution and simplification, 1marks for correct answer.
d) The density, in $\mathrm{kg} / \mathrm{m}^{3}$ of the solid given that the mass of the solid is 144 Kg .

Solution

$$
\begin{aligned}
\text { Density } & =\frac{\text { Mass }}{\text { Volume }}=\frac{144000}{31.5 \pi}=\frac{14000}{31.5 \times 3.142} \\
& =141.5 \mathrm{~g} / \mathrm{cm}^{3}
\end{aligned}
$$

In $\mathrm{kg} / \mathrm{m}^{3}$.

$$
=141.5 \times 1000=141500 \mathrm{~kg} / \mathrm{m}^{3}
$$

Award 1mark for correct formula, 1mark for correct substitutions, 1mark for correct answer.
END

