APPLY ENGINEERING MATHEMATICS

UNIT CODE: ENG/OS/QS/CC/02/6/A

UNIT DESCRIPTION

This unit describes the competencies required by a Quantity Surveyor to apply a wide range of engineering mathematics in their work. This includes: applying algebraic functions, trigonometry and hyperbolic functions, complex numbers, coordinate geometry, carrying out binomial expansion, calculus, ordinary differential equations, Laplace transforms, power series, Statistics, Fourier series, Vector theory, Matrix, Numerical methods, probability, commercial calculations, estimations, measurements and calculations of quantities in solving problems.

ELEMENTS These describe the key outcomes which make up workplace function.	PERFORMANCE CRITERIA These are assessable statements which specify the required level of performance for each of the elements. Bold and italicized terms are elaborated in the Range.
1. Apply Algebra	1.1 Calculations involving Indices are performed as per the concept
1.2 Calculations involving Logarithms are performed as	
per the concept	
1.3 Scientific calculator is used in solving mathematical	
problems in line with manufacturer's manual	
1.4 Simultaneous equations are performed as per the	
rules	

4. Apply Coordinate Geometry	4.1 Polar equations are calculated using coordinate geometry 4.2 Graphs of given polar equations are drawn using the Cartesian plane 4.3 Normal and tangents are determined using coordinate geometry 4.4 Loci of points are determined for given mechanism
5. Carry out Binomial Expansion	5.0 Roots of numbers are determined using binomial theorem 5.1 Errors of small changes are determined using binomial theorem 5.2 Power series are derived through Binomial expansion
6. Apply Calculus	6.0 Derivatives of functions are determined using Differentiation 6.1 Derivatives of hyperbolic functions are determined using Differentiation 6.2 Derivatives of inverse trigonometric functions are determined using Differentiation 6.3 Rate of change and small change are determined using Differentiation. 6.4 Calculation involving stationery points of functions of two variables are performed using differentiation. 6.5 Integrals of algebraic functions are determined using integration 6.6 Integrals of trigonometric functions are determined using integration 6.7 Integrals of logarithmic functions are determined using integration 6.8 Integrals of hyperbolic and inverse functions are determined using integration
7. Solve Ordinary differential equations	7.0 First order and second order differential equations are formed. 7.1 First order and second order differential equations are solved using the method of undetermined coefficients 7.2 First order and second order differential equations are solved from given boundary conditions

8. Apply Laplace transforms	8.1 Laplace transforms are solved using initial and final value theorems 8.2 Inverse Laplace transforms are solved using partial fractions 8.3 Differential equations are solved using Laplace transforms
9 Apply Power Series	9.1 Power series are obtained using Taylor's Theorem 9.2 Power series are obtained using Maclaurin's theorem
10 Apply Statistics	10.1 Identification, Collection and Organization of data is performed 10.2 Interpretation, analysis and presentation of data in appropriate format is performed 10.3 Mean, median, mode and Standard deviation are obtained from given data
11. Apply Fourier Series	11.1 Fourier series coefficients are obtained using Fourier series techniques 11.2 Fourier series for 2π to T is are obtained using Fourier series techniques 11.3 Fourier series for odd and even functions are obtained using Fourier series techniques 11.4 Harmonic analysis is performed using numerical methods
12.Apply Vector theory	12.1 Calculations involving vector algebra, dot and cross products using vector theory 12.2 Gradient, Divergence and Curl are obtained 12.3 Vector calculations are performed using Green's theorem 12.4 Vector calculations are performed using Stoke's theorem 12.5 Conservative vector fields and line and surface integrals are obtained using Gauss's theorem
13. Apply Matrix	13.1 Determinant and inverse of 3×3 matrix are obtained 13.2 Solutions of simultaneous equations are obtained 13.3 Calculation involving Eigen values and Eigen vectors are performed
14. Apply Numerical methods	14.1 Roots of polynomials are obtained using iterative numerical methods

$\left.\begin{array}{|l|l|}\hline & \begin{array}{c}\text { 14.2 Interpolation and extrapolation are performed using } \\ \text { numerical methods }\end{array} \\ \hline \begin{array}{c}\text { 15. Apply concepts of probability for } \\ \text { work }\end{array} & \begin{array}{c}\text { 15.1 Calculations are performed based on Laws of } \\ \text { probability in } \\ \text { 15.2 Calculation involving probability distributions, } \\ \text { mathematical expectation sampling distributions } \\ \text { are performed }\end{array} \\ & \begin{array}{c}\text { 15.3 Probability events are determined from dependent, } \\ \text { independent and mutually exclusive }\end{array} \\ \text { 15.4 Counting is done using permutation, combination, } \\ \text { tree diagrams and Venn diagrams techniques }\end{array}\right\}$

RANGE

This section provides work environments and conditions to which the performance criteria apply. It allows for different work environments and situations that will affect performance.

Variable	Range
Hyperbolic functions includ but not limited to:	- $\operatorname{Sinh} x$ - $\operatorname{Cosh} x$ - $\operatorname{Cosec} x$ - Coth x - Tanh x - $\operatorname{Sech} \mathrm{x}$

Figures includes but not limited:	\bullet	Triangles
	\bullet	Squares
	\bullet	Rectangles
	\bullet	Circles
	\bullet	Spheres
	\bullet	•ylinders
	\bullet	Pubes
	\bullet	Cuboids
Quantities includes but not limited to:	\bullet	Pyramids
	\bullet	Weight,
	\bullet	Area
	\bullet	Volume
	\bullet	Length
	\bullet	Width
	\bullet	Depth
	\bullet	Perimeter

REQUIRED SKILLS AND KNOWLEDGE

This section describes the skills and knowledge required for this unit of competency.

Required Skills

The individual needs to demonstrate the following skills:

- Applying fundamental operations (addition, subtraction, division, multiplication)
- Using and applying mathematical formulas
- Logical thinking
- Problem solving
- Applying statistics
- Drawing graphs
- Using different measuring tools

Required knowledge

The individual needs to demonstrate knowledge of:

- Fundamental operations (addition, subtraction, division, multiplication)
- Calculating area and volume
- Types and purpose of measuring instruments
- Units of measurement and abbreviations
- Rounding techniques
- Types of fractions
- Types of tables and graphs
- Presentation of data in tables and graphs
- Vector operations
- Matrix operations

EVIDENCE GUIDE

This provides advice on assessment and must be read in conjunction with the performance criteria, required skills, knowledge and range.

1. Critical aspects of Competency	Assessment requires evidence that the candidate: 1.1 Applied Trigonometry and hyperbolic functions 1.2 Applied complex numbers 1.3 Determined angles and length in triangles 1.4 Applied Calculus 1.5 Solved Ordinary differential equations 1.6 Applied Laplace transforms 1.7 Applied Power Series 1.8 Applied Fourier Series 1.9 Applied Vector theory 1.10 Applied Matrix 1.11 Identified and selected measuring equipment 1.12 Collected, Analyzed and presented data 1.13 Applied Numerical methods
2.0 Resource Implications	The following resources should be provided: 2.1 Access to relevant workplace or appropriately simulated environment where assessment can take place 2.2 Measuring equipment 2.3 Materials relevant to the proposed activity or tasks
3.0 Methods of Assessment	Competency in this unit may be assessed through: 3.1 Observation 3.2 Oral questioning 3.3 Written test 3.4 Portfolio of Evidence 3.5 Interview 3.6 Third party report
Context of Assessment	Competency may be assessed: 4. 1On-the-job 4. 2Off-the -job

	4. 3During Industrial attachment
Guidance information for assessment	Holistic assessment with other units relevant to the industry sector, workplace and job role is recommended.

PREPARE AND INTERPRET TECHNICAL DRAWINGS

UNIT CODE: ENG/OS/QS/CC/02/6/A

UNIT DESCRIPTION

This unit covers the competencies required to prepare and interpret technical drawings by a Quantity Surveyor. It involves competencies to select, use and maintain drawing equipment and materials. It also involves producing plain geometry drawings, solid geometry drawings, pictorial and orthographic drawings of components and application of CAD softwares.

ELEMENTS AND PERFORMANCE CRITERIA

ELEMENT These describe the key outcomes that make up workplace function.	PERFORMANCE CRITERIA These are assessable statements which specify the required level of performance for each of the elements. Bold and italicized terms are elaborated in the Range
1. Use and maintain drawing equipment and materials	1.1 Drawing equipment are obtained according to task requirements 1.2 Drawing materials are obtained according to task requirements 3 Drawing equipment are used and maintained according to manufacturer instructions 1.4 Drawing materials are used according to task requirements 1.5 Waste materials are disposed in accordance with workplace procedures and environmental legislations 1.6 Personal Protective Equipment is used according to occupational safety and health regulations

