APPLY ENGINEERING MATHEMATICS

UNIT CODE: ENG/OS/TXP/CC/02/5/A

UNIT DESCRIPTION

This unit describes the competencies required by a Textile Processing craft person in order to apply engineering mathematics. It involves competencies required to apply algebra, trigonometry and hyperbolic functions, complex numbers, coordinate geometry, carry out binomial expansion, calculus, solve ordinary differential equations, carry out mensuration, apply power series, statistics, numerical methods, vector theory and matrix.

ELEMENTS AND PERFORMANCE CRITERIA

$\left.\begin{array}{|l|l|}\hline \begin{array}{l}\text { ELEMENT } \\ \text { These describe the key } \\ \text { outcomes which make up } \\ \text { workplace function. }\end{array} & \begin{array}{l}\text { PERFORMANCE CRITERIA } \\ \text { These are assessable statements which specify } \\ \text { the required level of performance for each of the } \\ \text { elements. } \\ \text { Bold and italicized terms are elaborated in the } \\ \text { Range. }\end{array} \\ \hline \text { 1. Apply Algebra } & \begin{array}{l}\text { 1.1 Calculations involving Indices are } \\ \text { performed as per the concept } \\ \text { 1.2 Calculations involving Logarithms are } \\ \text { performed as per the concept }\end{array} \\ \text { 1.3 Scientific calculator is used in solving } \\ \text { mathematical problems in line with } \\ \text { manufacturer's manual }\end{array}\right\}$

ELEMENT These describe the key outcomes which make up workplace function.	PERFORMANCE CRITERIA These are assessable statements which specify the required level of performance for each of the elements. Bold and italicized terms are elaborated in the Range.
	3.2 Operations involving complex numbers are performed 3.3 Calculations involving complex numbers are performed using De Moivre's theorem
4. Apply Coordinate Geometry	4.1 Polar equations are calculated using coordinate geometry 4.2 Graphs of given polar equations are drawn using the Cartesian plane 4.3 Normal and tangents are determined using coordinate geometry
5. Carry out Binomial Expansion	1.1 Roots of numbers are determined using binomial theorem 1.2 Errors of small changes are determined using binomial theorem
6. Apply Calculus	6.1 Derivatives of functions are determined using Differentiation 6.2 Derivatives of hyperbolic functions are determined using Differentiation 6.3 Derivatives of inverse trigonometric functions are determined using Differentiation 6.4 Rate of change and small change are determined using Differentiation. 6.5 Calculation involving stationery points of functions of two variables are performed using differentiation. 6.6 Integrals of algebraic functions are determined using integration 6.7 Integrals of trigonometric functions are determined using integration 6.8 Integrals of logarithmic functions are determined using integration 6.9 Integrals of hyperbolic and inverse functions are determined using integration

$\left.\begin{array}{|l|l|}\hline \begin{array}{l}\text { ELEMENT } \\ \text { These describe the key } \\ \text { outcomes which make up } \\ \text { workplace function. }\end{array} & \begin{array}{l}\text { PERFORMANCE CRITERIA } \\ \text { These are assessable statements which specify } \\ \text { the required level of performance for each of the } \\ \text { elements. } \\ \text { Bold and italicized terms are elaborated in the } \\ \text { Range. }\end{array} \\ \hline \text { 7. Solve Ordinary differential } \\ \text { equations } & \begin{array}{l}\text { 7.1 First order and second order differential } \\ \text { equations are solved using the method of } \\ \text { undetermined coefficients }\end{array} \\ \hline \text { 7.2 First order and second order differential } \\ \text { equations are solved from given boundary } \\ \text { conditions }\end{array}\right\}$

$\left.$	ELEMENT
These describe the key	
outcomes which make up	
workplace function.	\quad
:---	
These are assessable statements which specify	
the required level of performance for each of the	
elements.	
Bold and italicized terms are elaborated in the	
Range.	\right\rvert\,

RANGE

This section provides work environments and conditions to which the performance criteria apply. It allows for different work environments and situations that will affect performance.

Variable	Range
1. Operations may include but is not limited to:	- Addition - Subtraction
2. Hyperbolic functions may include but is not limited to:	- $\operatorname{Sinh} \mathrm{x}$ - Cosh x - $\operatorname{Cosec} x$ - Coth x - Tanh x - Sech x
3. Probability Distributions may include but is not limited to:	- Binomial - Poisson - Normal
4. Numerical Methods may include but is not limited to:	- Newton Raphson - Gregory Newton

REQUIRED SKILLS AND KNOWLEDGE

This section describes the skills and knowledge required for this unit of competency.

Required Skills

The individual needs to demonstrate the following skills:

- Applying fundamental operations (addition, subtraction, division, multiplication)
- Using and applying mathematical formulas
- Logical thinking
- Problem solving
- Applying statistics
- Drawing graphs
- Using different measuring tools

Required knowledge

The individual needs to demonstrate knowledge of:

- Fundamental operations (addition, subtraction, division, multiplication)
- Calculating area and volume
- Types and purpose of measuring instruments
- Units of measurement and abbreviations
- Rounding techniques
- Types of fractions
- Types of tables and graphs
- Presentation of data in tables and graphs
- Vector operations
- Matrix operations

EVIDENCE GUIDE

This provides advice on assessment and must be read in conjunction with the performance criteria, required skills and knowledge and range.

1. Critical aspects of Competency	Assessment requires evidence that the candidate: 1.1 Applied Trigonometry and hyperbolic functions 1.2 Applied complex numbers 1.3 Applied Calculus 1.4 Solved Ordinary differential equations 1.5 Carried out mensuration 1.6 Applied Power Series 1.7 Applied vectors 1.8 Applied numerical methods 1.9 Applied statistics
2. Resource Implications	The following resources should be provided:

	2.1 Access to relevant workplace or appropriately simulated environment where assessment can take place 2.2 Measuring equipment 2.3 Materials relevant to the proposed activity or tasks		
3. Methods of			
Assessment			Competency in this unit may be assessed through:
:---			
$3.1 \quad$Direct Observation 3.2 Demonstration with Oral Questioning $3.3 \quad$ Written tests			
4.Context of Assessment		Competency may be assessed individually in the actual	
:---			
workplace or through accredited institution or during industrial			
attachment			

