APPLY FLUID MECHANICS PRINCIPLES

UNIT CODE: ENG/OS/TEX/CC/04/6/A

Unit description

This unit describes the competencies required by a textile technician in order to apply a wide range of fluid mechanics principles in their work. It includes understanding flow of fluids, demonstrating knowledge in viscous flow, performing dimensional analysis and operating fluid pumps

ELEMENT	PERFORMANCE CRITERIA
These describe the key	These assessable statements specify the required level of
outcomes that make up	performance for each of the elements.
workplace function.	Bold and italicized terms are elaborated in the Range.
1. Understand flow	1.1 Flow rate in pipes is measured according to work
of fluids	requirements
	1.2 Losses in pipes are determined according to work
	requirements
	1.3 Causes of losses in pipes are determined according to
	work requirements
	1.4 Flow losses equations are applied in problem solving
	according to prescribed fluid principles
2. Demonstrate	2.1 Viscous flow between parallel surfaces are explained
knowledge in	according to prescribed fluid principles
viscous flow	2.2 Viscous flow equations between parallel surfaces are
	derived and applied according to prescribed fluid
	principles
	2.3 Viscous flow equations in circular pipes are derived
	and applied in problem solving according to
	prescribed fluid principles
3. Perform	3.1 Dimensional analysis is explained according to
dimensional	prescribed fluid principles
analysis	3.2 Principle of dimensional homogeneity is explained
	according to prescribed fluid principles
	3.3 Fundamental dimensions are stated according to
	prescribed fluid principles
	3.4 Dimensional units are defined according to prescribed
	fluid principles
	3.5 <i>Physical quantities</i> are identified according to
	prescribed fluid principles

ELEMENTS AND PERFORMANCE CRITERIA

ELEMENT	PERFORMANCE CRITERIA
These describe the key	These assessable statements specify the required level of
outcomes that make up	performance for each of the elements.
workplace function.	Bold and italicized terms are elaborated in the Range.
	3.6 Dimensional analysis is applied in problem solving
	according to prescribed fluid principles
4. Operate fluid	4.1 <i>Principle of operation</i> of pumps is described
pumps	according to prescribed fluid principles
	4.2 Reciprocating pump equation is derived according to
	prescribed fluid principles
	4.3 Centrifugal pump equation is derived according to
	prescribed fluid principles
	4.4 Pump equations are applied in problem solving
	according to prescribed fluid principles

RANGE

This section provides work environments and conditions to which the performance criteria apply. It allows for different work environments and situations that will affect performance.

Variable	Range
Causes of losses may include but	• Friction
is not limited to:	• Enlargement/reduction in cross-sectional
Ó	areas
Physical quantities may include	• Mass
but is not limited to:	• Force
	• Density
	• Velocity
	Acceleration
Principle of operation may	Reciprocating
include but is not limited to:	• Centrifugal

REQUIRED SKILLS AND KNOWLEDGE

This section describes the skills and knowledge required for this unit of competency.

Required Skills

The individual needs to demonstrate the following skills:

- Apply basic mechanical formulas
- Use of basic mechanical machines
- Perform various unit conversions of mechanical quantities
- Basic mechanical systems design

- Mechanical machine operation
- Logical thinking
- Problem solving
- Applying statistics
- Drawing graphs
- Using different measuring tools

Required knowledge

The individual needs to demonstrate knowledge of:

- Newton's law
- Levers
- Gear trains
- Laws of conservation of energy
- Laws of friction
- Type of forces
- Thermodynamics
- Calculation of fluid pressure and flow rate
- Mechanical advantage and efficiency calculations
- Gas laws
- SI units of mechanical energy.
- Power transmission systems
- Parameters of fluid system
- Operation of mechanical machines
- Mechanical calculation of power, energy, work done, torque and safety factor
- Units of measurement, conversions and abbreviations

EVIDENCE GUIDE

This provides advice on assessment and must be read in conjunction with the performance criteria, required skills and knowledge and range.

1	Critical aspects of	Assessment requires evidence that the candidate:
	Competency	1.1 Identified Principles of mechanical science
		1.2 Performed mechanical calculations of a system
		1.3 Identified types of forces on a system
		1.4 Calculated resultant forces on plane framework
		1.5 Identified application of forces on the production flow
		1.6 Tested mechanical properties of a materials
		1.7 Identified tools and equipment for measuring system
		parameters
		1.8 Recorded and interpreted measured parameters.
		1.9 Operated Power transmission systems

2 Resource	The following resources should be provided:	
Implications	2.1 Access to relevant workplace or appropriately	
	simulated environment where assessment can take	
	place	
	2.2 Measuring tools and equipment	
	2.3 Sample materials to be tested	
3 Methods of	Competency in this unit may be assessed through:	
Assessment	3.1 Direct Observation	
	3.2 Demonstration with Oral Questioning	
	3.3 Case studies	
	3.4 Written tests	
Context of Assessment	Competency may be assessed:	
	4.1 On-the-job	
	4.2 Off-the –job	
	4.3 During Industrial attachment	
Guidance information	Holistic assessment with other units relevant to the	
for assessment	industry sector, workplace and job role is recommended.	
easy wet. com		

©TVET CDACC 2019