APPLY ENGINEERING MATHEMATICS

UNIT CODE: ENG/OS/TEX/CC/02/6/A

Unit description

This unit describes the competencies required by a technician in order to apply engineering mathematics. It involves competencies required to apply algebra, trigonometry and hyperbolic functions, complex numbers, coordinate geometry, carry out binomial expansion, calculus, solve ordinary differential equations, carry out mensuration, apply power series, statistics, numerical methods, vector theory and matrix.

ELEMENTS AND PERFORMANCE CRITERIA

ELEMENT	PERFORMANCE CRITERIA	
These describe the key	These assessable statements specify the required	
outcomes which make up	level of performance for each of the elements.	
workplace function.	Bold and italicized terms are elaborated in the	
	Range.	
1. Apply Algebra	1.1 Calculations involving Indices are performed	
	as per the concept	
	1.2 Calculations involving Logarithms are	
	performed as per the concept	
	1.3 Scientific calculator is used in solving	
	mathematical problems in line with	
	manufacturer's manual	
	1.4 Simultaneous equations are performed as per	
	the rules	
	1.5 Quadratic equations are calculated as per the	
	concept	
	1.6 Permutations and combinations are performed	
2. Apply Trigonometry and	2.1 Calculations are performed using	
hyperbolic functions	trigonometric rules	
	2.2 Calculations are performed using hyperbolic	
	functions	
3. Apply complex numbers	3.1 Complex numbers are represented using	
	Argand diagrams	
	3.2 Operations involving complex numbers are	
	performed	
	performed	

ELEMENT	PERFORMANCE CRITERIA	
These describe the key	These assessable statements specify the required	
outcomes which make up	level of performance for each of the elements.	
workplace function.	Bold and italicized terms are elaborated in the	
•	Range.	
	3.3 Calculations involving complex numbers are	
	performed using De Moivre's theorem	
4. Apply Coordinate	4.1 Polar equations are calculated using	
Geometry	coordinate geometry	
	4.2 Graphs of given polar equations are drawn	
	using the Cartesian plane	
	4.3 Normal and tangents are determined using	
	coordinate geometry	
5. Carry out Binomial	5.1 Roots of numbers are determined using	
Expansion	binomial theorem	
	5.2 Errors of small changes are determined using	
	binomial theorem	
6. Apply Calculus	6.1 Derivatives of functions are determined using	
	Differentiation	
	6.2 Derivatives of hyperbolic functions are	
	determined using Differentiation	
	6.3 Derivatives of inverse trigonometric functions	
	are determined using Differentiation	
	6.4 Rate of change and small change are	
	determined using Differentiation.	
	6.5 Calculation involving stationery points of	
	functions of two variables are performed using	
	differentiation.	
	6.6 Integrals of algebraic functions are determined using integration	
	6.7 Integrals of trigonometric functions are	
	determined using integration	
	6.8 Integrals of logarithmic functions are	
	determined using integration	
	6.9 Integrals of hyperbolic and inverse functions	
	are determined using integration	
7. Solve Ordinary differential	7.1 First order and second order differential	
equations	equations are solved using the method of	
	undetermined coefficients	
	7.2 First order and second order differential	
	equations are solved from given boundary	
	conditions	

ELEMENT	PERFORMANCE CRITERIA
These describe the key	These assessable statements specify the required
outcomes which make up	level of performance for each of the elements.
workplace function.	Bold and italicized terms are elaborated in the
	Range.
8. Carry out Mensuration	8.1 Perimeter and areas of figures are obtained
	8.2 Volume and Surface area of solids are
	obtained
	8.3 Area of irregular figures are obtained
	8.4 Areas and volumes are obtained using Pappus
	theorem
9. Apply Power Series	a. Power series are obtained using Taylor's
	Theorem
	b. Power series are obtained using McLaurin's 's
	theorem
10. Apply Statistics	10.1Mean, median, mode and Standard deviation
	are obtained from given data
	10.2Calculations are performed based on Laws of
	probability
	10.3Calculation involving <i>probability</i>
	distributions, mathematical expectation
	sampling distributions are performed
	10.4Sampling distribution methods are applied in
	data analysis
	10.5Calculations involving use of standard normal
	table, sampling distribution, T-distribution
	and Estimation are done
	10.6Confidence intervals are determined
11. Apply Numerical methods	8.1 Roots of polynomials are obtained using
	iterative <i>numerical methods</i>
	8.2 Interpolation and extrapolation is performed
	using numerical methods
12. Apply Vector theory	12.1Vectors and scalar quantities are obtained in
	two and three dimensions
	12.2 <i>Operations</i> on vectors are performed
	12.3Position of vectors is obtained
	12.4Resolution of vectors is done

ELEMENT	PERFORMANCE CRITERIA
These describe the key	These assessable statements specify the required
outcomes which make up	level of performance for each of the elements.
workplace function.	Bold and italicized terms are elaborated in the
	Range.
13. Apply Matrix	13.1Determinant and inverse of 3x3 matrix are
	obtained
	13.2Solutions of simultaneous equations are
	obtained
	13.3Calculation involving Eigen values and Eigen
	vectors are performed

RANGE

This section provides work environments and conditions to which the performance criteria apply. It allows for different work environments and situations that will affect performance.

Variable		Range
1.	Operations may include but is not limited to:	AdditionSubtraction
2.	Hyperbolic functions may include but is not limited to:	 Sinh x Cosh x Cosec x Coth x Tanh x Sech x
3.	Probability Distributions may include but is not limited to:	BinomialPoissonNormal
4.	Numerical Methods may include but is not limited to:	Newton RaphsonGregory Newton

REQUIRED SKILLS AND KNOWLEDGE

This section describes the skills and knowledge required for this unit of competency.

Required Skills

The individual needs to demonstrate the following skills:

- Applying fundamental operations (addition, subtraction, division, multiplication)
- Using and applying mathematical formulas
- Logical thinking

- Problem solving
- Applying statistics
- Drawing graphs
- Using different measuring tools

Required knowledge

The individual needs to demonstrate knowledge of:

- Fundamental operations (addition, subtraction, division, multiplication)
- Calculating area and volume
- Types and purpose of measuring instruments
- Units of measurement and abbreviations
- Rounding techniques
- Types of fractions
- Types of tables and graphs
- Presentation of data in tables and graphs
- Vector operations
- Matrix operations

EVIDENCE GUIDE

This provides advice on assessment and must be read in conjunction with the performance criteria, required skills and knowledge and range.

1. Critical	Assessment requires evidence that the candidate:	
aspects of	1.1 Applied Trigonometry and hyperbolic functions	
Competency	1.2 Applied complex numbers	
	1.3 Applied Calculus	
	1.4 Solved Ordinary differential equations	
	1.5 Carried out mensuration	
	1.6 Applied Power Series	
	1.7 Applied vectors	
	1.8 Applied numerical methods	
	1.9 Applied statistics	
2. Resource	The following resources should be provided:	
Implications	2.1 Access to relevant workplace or appropriately simulated	
	environment where assessment can take place	
	2.2 Measuring equipment	
	2.3 Materials relevant to the proposed activity or tasks	
3. Methods of	Competency in this unit may be assessed through:	
Assessment	3.1 Direct Observation	
	3.2 Demonstration with Oral Questioning	
	3.3 Written tests	

4.	Context of	Competency may be assessed:	
	Assessment	4.1 On-the-job	
		4.2 Off-the –job	
		4.3 During Industrial attachment	
5.	Guidance	Holistic assessment with other units relevant to the industry	
	information	sector, workplace and job role is recommended.	
	for		
	assessment		

easylvet.com