APPLY THERMODYNAMICS PRINCIPLES

UNIT CODE:ENG/OS/WEF/CC/05/6/A

UNIT DESCRIPTION

This unit describes the competencies required by a technician in order to apply thermodynamics principles in their work. It includes understanding fundamentals of thermodynamics, performing steady flow processes, performing non-steady flow processes, understanding perfect gases, generating steam, performing thermodynamics reversibility and entropy, understanding idea gas cycle, demonstrating fuel and combustion, perform heat transfer, understanding heat exchangers, understanding air compressors, understanding gas turbines and understanding of impulse steam turbines.

ELEMENT	PERFORMANCE CRITERIA
These describe the key outcomes	These are assessable statements which specify the
which make up workplace	required level of performance for each of the
function.	elements.
	Bold and italicized terms are elaborated in the
	Range.
1. Understand fundamentals of	1.1 Terms used in thermodynamics are described
thermodynamics	1.2 Thermodynamics processes and cycles are
	described
	1.3 First law of thermodynamics is applied
2. Perform steady flow processes	2.1 Steady flow energy equation is derived
	2.2 Steady flow energy equation is applied in
	problem solving
	2.3 Steady flow energy equation is applied in
	utilities
3. Perform non steady flow	3.1 Non-flow energy equation is derived
processes	3.2 Non-flow energy equation is applied in problem
	solving
4. Understand perfect gases	4.1 Perfect gas laws are stated
	4.2 Gas laws experiment are carried out
	4.3 Gas laws are applied
5. Generate steam	5.1 Dryness fraction is determined

ELEMENTS AND PERFORMANCE CRITERIA

ELEMENT	PERFORMANCE CRITERIA
These describe the key outcomes	These are assessable statements which specify the
which make up workplace	required level of performance for each of the
function.	elements.
	Bold and italicized terms are elaborated in the
	Range.
	5.2 Relationship between pressure and boiling
	point is determined
	5.3 Energy balance is carried out
	5.4 Relationship between temperature and pressure
	is determined.
6. Perform thermodynamics	6.1 Thermodynamics reversibility is explained
reversibility and entropy	6.2 Principles of heat engine are explained
	6.3 Second law of thermodynamics is applied
	6.4 Entropy is explained in thermodynamics cycle
7. Understand idea gas cycle	7.1 Ideal gas cycle processes are explained
	7.2 Air standard efficiency and actual efficiency
	are differentiated
	7.3 Problems are solved in ideal gas cycle
8. Demonstrate fuel and	8.1 Fuels are classified
combustion	8.2 Properties of fuels are described
	8.3 Combustion equation are derived
	8.4 Combustion equation is applied to combustion
	and exhaust gas problems
9. Perform heat transfer	9.1 Conduction equation is derived and applied
	from Fourier's law
	9.2 Heat transfer equation is derived and applied
	from Newton's law of cooling and Fourier's
	law
10. Understand heat exchangers	10.1 Heat exchangers are classified
	10.2 Recuperative heat exchangers are described
	10.3 Heat equations are applied to solve heat
11 Understand - in -	exchanger problems
11. Understand air compressors	11.1 Air compressors are classified
	11.2 <i>Types of air compressors</i> are described
	11.3 Equations of reciprocating compressors are
12. Understend techinge	derived and applied
12. Understand gas turbines	12.1 Theoretical cycle for gas turbines is

ELEMENT	PERFORMANCE CRITERIA			
These describe the key outcomes	These are assessable statements which specify the			
which make up workplace	required level of performance for each of the			
function.	elements.			
	Bold and italicized terms are elaborated in the			
	Range.			
	explained			
	12.2 Open cycle gas turbine is described			
	12.3 Closed cycle gas turbine is described			
	12.4 Gas turbine equations are derived and			
	applied			
13. Understand impulse steam	13.1 <i>Principles of operations</i> of the impulse			
turbines	steam turbines is described			
	13.2 Impulse steam turbine equation is derived			
	and applied			

RANGE

This section provides work environments and conditions to which the performance criteria apply. It allows for different work environments and situations that will affect performance.

Va	riable	Range
1.	Utilities may include but not	• Boilers
	limited to:	• Condensers
		• Compressors
		• Nozzles
		Throttling processes
2.	Perfect gas laws may include but	Boyle's law
	not limited to:	• Charle's law
		• Joule's law
3.	Principles may include but not	• Newton's laws of motion
	limited to:	• Law of conservation of linear momentum
		• Law of conservation of energy
		Archimedes' principle
4.	Types of air compressors may	Reciprocating
	include but not limited to:	• Blowers
		Sliding valves

5.	Types of air compressors may	•	Compounding
	include but not limited to:	•	Multistage impulse turbine

REQUIRED SKILLS AND KNOWLEDGE

This section describes the skills and knowledge required for this unit of competency.

Required Skills

The individual needs to demonstrate the following skills:

- Apply basic mechanical formulas
- Use of basic mechanical machines
- Perform various unit conversions of mechanical quantities
- Basic mechanical systems design
- Mechanical machine operation
- Logical thinking
- Problem solving
- Applying statistics
- Drawing graphs
- Using different measuring tools

Required knowledge

The individual needs to demonstrate knowledge of:

- Newton's law
- Levers
- Gear trains
- Laws of conservation of energy
- Laws of friction
- Type of forces
- Thermodynamics
- Calculation of fluid pressure and flow rate
- Mechanical advantage and efficiency calculations
- Gas laws

SI units of mechanical energy.

- Power transmission systems
- Parameters of fluid system

- Operation of mechanical machines
- Mechanical calculation of power, energy, work done, torque and safety factor
- Units of measurement, conversions and abbreviations

EVIDENCE GUIDE

This provides advice on assessment and must be read in conjunction with the performance criteria, required skills and knowledge and range.

1	Critical aspects of	Assessment requires avidence that the condideter			
1.	Critical aspects of	Assessment requires evidence that the candidate:			
	Competency	1.1 Identified Principles of mechanical science			
		1.2 Performed mechanical calculations of a system			
		1.3 Identified types of forces on a system			
		1.4 Calculated resultant forces on plane framework			
		1.5 Identified application of forces on the production flow			
		1.6 Tested mechanical properties of a materials			
		1.7 Identified tools and equipment for measuring system parameters			
		1.8 Recorded and interpreted measured parameters.			
		1.9 Operated Power transmission systems			
2.	Resource	The following resources should be provided:			
	Implications	5.1 Access to relevant workplace or appropriately simulated			
		environment where assessment can take place 5.2 Measuring tools and equipment			
		5.3 Sample materials to be tested			
3.	Methods of	Competency in this unit may be assessed through:			
	Assessment	3.1 Direct Observation			
		3.2 Demonstration with Oral Questioning			
		3.3 Case studies			
		3.4 Written tests			
4.	Context of	Competency may be assessed			
	Assessment 4.1 On job				
	4.2 Off job				
		4.3 During industrial attachment			
5.	Guidance	Holistic assessment with other units relevant to the industry sector,			
	information for	workplace and job role is recommended.			
	assessment				